5 research outputs found

    Functional Characterization of the Epidermal Cholinergic System In Vitro

    Get PDF
    The aim of this study was to analyze the influence of cholinergic and anticholinergic drugs on epidermal physiology using organotypic cocultures (OTCs). Blocking of all acetylcholine receptors (AChRs) by combined treatment with mecamylamine and atropine or treatment with strychnine (blocking α9nAChR) for 7–14 days resulted in a complete inhibition of epidermal differentiation and proliferation. Blockage of nicotinic (n)AChR with mecamylamine led to a less pronounced delay in epidermal differentiation and proliferation than blockage of muscarinic (m)AChR with atropine, evidenced by reduced epithelial thickness and expression of terminal differentiation markers like cytokeratin 2e or filaggrin. In OTCs treated with atropine, mecamylamine, or strychnine, we could demonstrate intracellular lipid accumulation in the lower epidermal layers, indicating a severely disturbed epidermal barrier. In addition, we observed prominent acantholysis in the basal and lower suprabasal layers in mecamylamine-, atropine-, and strychnine-treated cultures, accompanied by a decreased expression of cell adhesion proteins. This globally reduced cell adhesion led to cell death via intrinsic activation of apoptosis. In contrast, stimulation of nAChR and mAChR with cholinergic drugs resulted in a significantly thickened epithelium, accompanied by an improved epithelial maturation. In summary, we show that epidermal AChR are crucially involved in the regulation of epidermal homeostasis

    Dermatologist-like explainable AI enhances trust and confidence in diagnosing melanoma

    No full text
    Abstract Artificial intelligence (AI) systems have been shown to help dermatologists diagnose melanoma more accurately, however they lack transparency, hindering user acceptance. Explainable AI (XAI) methods can help to increase transparency, yet often lack precise, domain-specific explanations. Moreover, the impact of XAI methods on dermatologists’ decisions has not yet been evaluated. Building upon previous research, we introduce an XAI system that provides precise and domain-specific explanations alongside its differential diagnoses of melanomas and nevi. Through a three-phase study, we assess its impact on dermatologists’ diagnostic accuracy, diagnostic confidence, and trust in the XAI-support. Our results show strong alignment between XAI and dermatologist explanations. We also show that dermatologists’ confidence in their diagnoses, and their trust in the support system significantly increase with XAI compared to conventional AI. This study highlights dermatologists’ willingness to adopt such XAI systems, promoting future use in the clinic

    A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task

    No full text
    Background: Recent studies have demonstrated the use of convolutional neural networks (CNNs) to classify images of melanoma with accuracies comparable to those achieved by board-certified dermatologists. However, the performance of a CNN exclusively trained with dermoscopic images in a clinical image classification task in direct competition with a large number of dermatologists has not been measured to date. This study compares the performance of a convolutional neuronal network trained with dermoscopic images exclusively for identifying melanoma in clinical photographs with the manual grading of the same images by dermatologists. Methods: We compared automatic digital melanoma classification with the performance of 145 dermatologists of 12 German university hospitals. We used methods from enhanced deep learning to train a CNN with 12,378 open-source dermoscopic images. We used 100 clinical images to compare the performance of the CNN to that of the dermatologists. Dermatologists were compared with the deep neural network in terms of sensitivity, specificity and receiver operating characteristics. Findings: The mean sensitivity and specificity achieved by the dermatologists with clinical images was 89.4% (range: 55.0%-100%) and 64.4% (range: 22.5%-92.5%). At the same sensitivity, the CNN exhibited a mean specificity of 68.2% (range 47.5%-86.25%). Among the dermatologists, the attendings showed the highest mean sensitivity of 92.8% at a mean specificity of 57.7%. With the same high sensitivity of 92.8%, the CNN had a mean specificity of 61.1%. Interpretation: For the first time, dermatologist-level image classification was achieved on a clinical image classification task without training on clinical images. The CNN had a smaller variance of results indicating a higher robustness of computer vision compared with human assessment for dermatologic image classification tasks. (C) 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task

    No full text
    Background: Recent studies have successfully demonstrated the use of deep-learning algorithms for dermatologist-level classification of suspicious lesions by the use of excessive proprietary image databases and limited numbers of dermatologists. For the first time, the performance of a deep-learning algorithm trained by open-source images exclusively is compared to a large number of dermatologists covering all levels within the clinical hierarchy. Methods: We used methods from enhanced deep learning to train a convolutional neural network (CNN) with 12,378 open-source dermoscopic images. We used 100 images to compare the performance of the CNN to that of the 157 dermatologists from 12 university hospitals in Germany. Outperformance of dermatologists by the deep neural network was measured in terms of sensitivity, specificity and receiver operating characteristics. Findings: The mean sensitivity and specificity achieved by the dermatologists with dermoscopic images was 74.1% (range 40.0%-100%) and 60% (range 21.3%-91.3%), respectively. At a mean sensitivity of 74.1%, the CNN exhibited a mean specificity of 86.5% (range 70.8%-91.3%). At a mean specificity of 60%, a mean sensitivity of 87.5% (range 80%-95%) was achieved by our algorithm. Among the dermatologists, the chief physicians showed the highest mean specificity of 69.2% at a mean sensitivity of 73.3%. With the same high specificity of 69.2%, the CNN had a mean sensitivity of 84.5%. Interpretation: A CNN trained by open-source images exclusively outperformed 136 of the 157 dermatologists and all the different levels of experience (from junior to chief physicians) in terms of average specificity and sensitivity. (C) 2019 The Author(s). Published by Elsevier Ltd
    corecore