17 research outputs found

    A new species group of Strumigenys (Hymenoptera, Formicidae) from Ecuador, with a description of its mandible morphology

    Get PDF
    Strumigenys is one of the most diverse ant genera in the world and arguably the most morphologically diverse, exhibiting an exceptional range of mandible shape and function. A new species, Strumigenys ayersthey sp. nov., discovered in the Chocó region of Ecuador is described. With two morphological characters, this species is shown to be a morphologically unique outlier among Strumigenys globally, having predominately smooth and shining cuticle surface sculpturing and long trap-jaw mandibles. Using μCT scans, we produced 3D images of the worker ant and static images to examine and compare mandible articular morphologies with most morphologically similar members of the mandibularis species group. Cuticular, pilosity, and articular mandible morphological differences supports placing the new species in its own new species group

    Estimating species relative abundances from museum records

    Get PDF
    Funding: C.F., U.B. and D.J.R. acknowledge COST Action ‘European Soil-Biology Data Warehouse for Soil Protection’ (EUdaphobase), CA18237, supported by COST (European Cooperation in Science and Technology). AEM thanks the Leverhulme Trust (RPG-2019-401). D.B.B. was supported by an NSF Postdoc Research Fellowship in Biology (NSF 000733206), S.M.R. was supported by an NSERC Discovery Grant Author Contributions, A.V.S. was supported by NSF 1755336, C.S.M was supported by NSF 1398620 and N.J.G was supported by NSF 2019470.1. Dated, geo-referenced museum specimens are a rich data source for reconstructing species' distribution and abundance patterns. However, museum records are potentially biased towards over-representation of rare species, and it is unclear whether museum records can be used to estimate relative abundance in the field. 2. We assembled 17 coupled field and museum datasets to quantitatively compare relative abundance estimates with the Dirichlet distribution. Collectively, these datasets comprise 73,039 museum records and 1,405,316 field observations of 2,240 species. 3. Although museum records of rare species overestimated relative abundance by 1-fold to over 100-fold (median study = 9.0), the relative abundance of species estimated from museum occurrence records was strongly correlated with relative abundance estimated from standardized field surveys (r2 range of 0.10-0.91, median study = 0.43). 4. These analyses provide a justification for estimating species relative abundance with carefully curated museum occurrence records, which may allow for the detection of temporal or spatial shifts in the rank ordering of common and rare species.Publisher PDFPeer reviewe

    The Rts1 Regulatory Subunit of Protein Phosphatase 2A Is Required for Control of G1 Cyclin Transcription and Nutrient Modulation of Cell Size

    Get PDF
    The key molecular event that marks entry into the cell cycle is transcription of G1 cyclins, which bind and activate cyclin-dependent kinases. In yeast cells, initiation of G1 cyclin transcription is linked to achievement of a critical cell size, which contributes to cell-size homeostasis. The critical cell size is modulated by nutrients, such that cells growing in poor nutrients are smaller than cells growing in rich nutrients. Nutrient modulation of cell size does not work through known critical regulators of G1 cyclin transcription and is therefore thought to work through a distinct pathway. Here, we report that Rts1, a highly conserved regulatory subunit of protein phosphatase 2A (PP2A), is required for normal control of G1 cyclin transcription. Loss of Rts1 caused delayed initiation of bud growth and delayed and reduced accumulation of G1 cyclins. Expression of the G1 cyclin CLN2 from an inducible promoter rescued the delayed bud growth in rts1Δ cells, indicating that Rts1 acts at the level of transcription. Moreover, loss of Rts1 caused altered regulation of Swi6, a key component of the SBF transcription factor that controls G1 cyclin transcription. Epistasis analysis revealed that Rts1 does not work solely through several known critical upstream regulators of G1 cyclin transcription. Cells lacking Rts1 failed to undergo nutrient modulation of cell size. Together, these observations demonstrate that Rts1 is a key player in pathways that link nutrient availability, cell size, and G1 cyclin transcription. Since Rts1 is highly conserved, it may function in similar pathways in vertebrates

    FIGURE 16 in The ant genus Strumigenys Smith, 1860 (Hymenoptera: Formicidae) in western North America North of Mexico

    No full text
    FIGURE 16. Clypeus in face view of representative Strumigenys species.Published as part of Booher, Douglas B., 2021, The ant genus Strumigenys Smith, 1860 (Hymenoptera: Formicidae) in western North America North of Mexico, pp. 201-248 in Zootaxa 5061 (2) on page 211, DOI: 10.11646/zootaxa.5061.2.1, http://zenodo.org/record/564937

    Taxonomic clarification of two Nearctic Strumigenys (Hymenoptera: Formicidae)

    No full text
    Booher, Douglas B. (2019): Taxonomic clarification of two Nearctic Strumigenys (Hymenoptera: Formicidae). Zootaxa 4664 (3): 401-411, DOI: https://doi.org/10.11646/zootaxa.4664.3.

    A new species group of Strumigenys (Hymenoptera, Formicidae) from Ecuador, with a description of its mandible morphology

    Get PDF
    Strumigenys is one of the most diverse ant genera in the world and arguably the most morphologically diverse, exhibiting an exceptional range of mandible shape and function. A new species, Strumigenys ayersthey sp. nov., discovered in the Chocó region of Ecuador is described. With two morphological characters, this species is shown to be a morphologically unique outlier among Strumigenys globally, having predominately smooth and shining cuticle surface sculpturing and long trap-jaw mandibles. Using µCT scans, we produced 3D images of the worker ant and static images to examine and compare mandible articular morphologies with most morphologically similar members of the mandibularis species group. Cuticular, pilosity, and articular mandible morphological differences supports placing the new species in its own new species group

    A taxonomic revision of the Strumigenys nitens and simulans groups (Hymenoptera: Formicidae), two Caribbean radiations of leaf litter ants

    No full text
    Booher, Douglas B., Prebus, Matthew, Lubertazzi, David (2019): A taxonomic revision of the Strumigenys nitens and simulans groups (Hymenoptera: Formicidae), two Caribbean radiations of leaf litter ants. Zootaxa 4656 (2): 335-358, DOI: https://doi.org/10.11646/zootaxa.4656.2.

    Functional innovation promotes diversification of form in the evolution of an ultrafast trap-jaw mechanism in ants

    Get PDF
    Evolutionary innovations underlie the rise of diversity and complexity-the 2 long-term trends in the history of life. How does natural selection redesign multiple interacting parts to achieve a new emergent function? We investigated the evolution of a biomechanical innovation, the latch-spring mechanism of trap-jaw ants, to address 2 outstanding evolutionary problems: how form and function change in a system during the evolution of new complex traits, and whether such innovations and the diversity they beget are repeatable in time and space. Using a new phylogenetic reconstruction of 470 species, and X-ray microtomography and high-speed videography of representative taxa, we found the trap-jaw mechanism evolved independently 7 to 10 times in a single ant genus (Strumigenys), resulting in the repeated evolution of diverse forms on different continents. The trap mechanism facilitates a 6 to 7 order of magnitude greater mandible acceleration relative to simpler ancestors, currently the fastest recorded acceleration of a resettable animal movement. We found that most morphological diversification occurred after evolution of latch-spring mechanisms, which evolved via minor realignments of mouthpart structures. This finding, whereby incremental changes in form lead to a change of function, followed by large morphological reorganization around the new function, provides a model for understanding the evolution of complex biomechanical traits, as well as insights into why such innovations often happen repeatedly
    corecore