33 research outputs found

    A Dynamic Splicing Program Ensures Proper Synaptic Connections in the Developing Cerebellum

    Get PDF
    Tight coordination of gene expression in the developing cerebellum is crucial for establishment of neuronal circuits governing motor and cognitive function. However, transcriptional changes alone do not explain all of the switches underlying neuronal differentiation. Here we unveiled a widespread and highly dynamic splicing program that affects synaptic genes in cerebellar neurons. The motifs enriched in modulated exons implicated the splicing factor Sam68 as a regulator of this program. Sam68 controls splicing of exons with weak branchpoints by directly binding near the 3′ splice site and competing with U2AF recruitment. Ablation of Sam68 disrupts splicing regulation of synaptic genes associated with neurodevelopmental diseases and impairs synaptic connections and firing of Purkinje cells, resulting in motor coordination defects, ataxia, and abnormal social behavior. These findings uncover an unexpectedly dynamic splicing regulatory network that shapes the synapse in early life and establishes motor and cognitive circuitry in the developing cerebellum

    Gene Expression Profiling of Pancreas Neuroendocrine Tumors with Different Ki67-Based Grades.

    Get PDF
    Pancreatic neuroendocrine tumors (PanNETs) display variable aggressive behavior. A major predictor of survival is tumor grade based on the Ki67 proliferation index. As information on transcriptomic profiles of PanNETs with different tumor grades is limited, we investigated 29 PanNETs (17 G1, 7 G2, 5 G3) for their expression profiles, mutations in 16 PanNET relevant genes and LINE-1 DNA methylation profiles. A total of 3050 genes were differentially expressed between tumors with different grades (p < 0.05): 1279 in G3 vs. G2; 2757 in G3 vs. G1; and 203 in G2 vs. G1. Mutational analysis showed 57 alterations in 11 genes, the most frequent being MEN1 (18/29), DAXX (7/29), ATRX (6/29) and MUTYH (5/29). The presence and type of mutations did not correlate with the specific expression profiles associated with different grades. LINE-1 showed significantly lower methylation in G2/G3 versus G1 tumors (p = 0.007). The expression profiles of matched primaries and metastasis (nodal, hepatic and colorectal wall) of three cases confirmed the role of Ki67 in defining specific expression profiles, which clustered according to tumor grades, independently from anatomic location or patient of origin. Such data call for future exploration of the role of Ki67 in tumor progression, given its involvement in chromosomal stability

    A Dynamic Splicing Program Ensures Proper Synaptic Connections in the Developing Cerebellum

    Get PDF
    Tight coordination of gene expression in the developing cerebellum is crucial for establishment of neuronal circuits governing motor and cognitive function. However, transcriptional changes alone do not explain all of the switches underlying neuronal differentiation. Here we unveiled a widespread and highly dynamic splicing program that affects synaptic genes in cerebellar neurons. The motifs enriched in modulated exons implicated the splicing factor Sam68 as a regulator of this program. Sam68 controls splicing of exons with weak branchpoints by directly binding near the 3′ splice site and competing with U2AF recruitment. Ablation of Sam68 disrupts splicing regulation of synaptic genes associated with neurodevelopmental diseases and impairs synaptic connections and firing of Purkinje cells, resulting in motor coordination defects, ataxia, and abnormal social behavior. These findings uncover an unexpectedly dynamic splicing regulatory network that shapes the synapse in early life and establishes motor and cognitive circuitry in the developing cerebellum

    GLI1 and AXIN2 Are Distinctive Markers of Human Calvarial Mesenchymal Stromal Cells in Nonsyndromic Craniosynostosis

    Get PDF
    All skeletal bones house osteogenic stem cell niches, in which mesenchymal stromal cells (MSC) provide progenitors for tissue growth and regeneration. They have been widely studied in long bones formed through endochondral ossification. Limited information is available on the composition of the osteogenic niche in flat bones (i.e., skull vault bones) that develop through direct membranous ossification. Craniosynostosis (CS) is a congenital craniofacial defect due to the excessive and premature ossification of skull vault sutures. This study aimed at analysing the expression of GLI1, AXIN2 and THY1 in the context of the human skull vault, using nonsyndromic forms of CS (NCS) as a model to test their functional implication in the aberrant osteogenic process. The expression of selected markers was studied in NCS patients' calvarial bone specimens, to assess the in vivo location of cells, and in MSC isolated thereof. The marker expression profile was analysed during in vitro osteogenic differentiation to validate the functional implication. Our results show that GLI1 and AXIN2 are expressed in periosteal and endosteal locations within the osteogenic niche of human calvarial bones. Their expression is higher in MSC isolated from calvarial bones than in those isolated from long bones and tends to decrease upon osteogenic commitment and differentiation. In particular, AXIN2 expression was lower in cells isolated from prematurely fused sutures than in those derived from patent sutures of NCS patients. This suggests that AXIN2 could reasonably represent a marker for the stem cell population that undergoes depletion during the premature ossification process occurring in CS

    Immunohistochemical detection of “ex novo” HLA-DR in tumor cells determines clinical outcome in laryngeal cancer patients

    Get PDF
    There are controversial results about the role of “ex novo” HLA-DR expression by tumor cells and its correlation with the oncological outcomes. Unfortunately, little is known about HLA-DR expression in laryngeal cancer tumor cells. The main purpose of this retrospective study is to strengthen the usefulness of studying “ex novo” HLA-DR expression on tumor cells from primary laryngeal squamous cell carcinoma (LSCC) patients and investigate its correlation with clinical outcome. We analyzed HLA-DR expression by immunohistochemical analysis in 56 patients with LSCC. The “ex novo” HLA-DR expression on laryngeal cancer tumor cells, assessing non-neoplastic LSCC – adjacent tissue, and the association of HLA-DR expression (HLA-DR+) with clinical outcomes were investigated. HLA-DR+ tumor cells were detected in 18/56 LSCC patients (32.1%). All specimens of non-neoplastic laryngeal carcinoma-adjacent tissue resulted HLA-DR negative (HLA-DR-). A statistically significant association was observed between HLA-DR + and well differentiated tumors (G1) (p<0.001). The Kaplan-Meier method showed how HLA-DR+ is significantly associated with both a better disease specific survival (HLA-DR+=100% vs. HLA-DR-=77.4%; p=0.047) and a better relapse free survival (HLA-DR+=100% vs. HLA-DR-=72.3%; p=0.021). Cox regression univariate analysis for death of disease confirmed a higher HR for HLA-DR absence on the surface of epithelial tumor cell [HR:37.489; 95% CI:0.750-18730.776; p=0.253] and for high-grade (G3) tumors [HR:18.601; 95% CI:3.613-95.764; p<0.0001]. Our results confirm that MHC class II HLA-DR expression is activated in a sub-set of LSCC patients. Evaluation of HLA-DR expression in LSCC could be useful for prognosis and future approaches towards personalized therapy
    corecore