607 research outputs found

    Measurement-based Run-to-run Optimization of a Batch Reaction-distillation System

    Get PDF
    Measurement-based optimization schemes have been developed to deal with uncertainty and process variations. One of the methods therein, labeled NCO tracking, relies on appropriate parameterization of the input profiles and adjusts the corresponding input parameters using measurements so as to satisfy the necessary conditions of optimality (NCO). The applicability of NCO-tracking schemes has been demonstrated on several academic-size examples. The goal of this paper is to show that it can be applied with similar ease to more complex real-life systems. Run-to-run optimization of a batch reaction-separation system with propylene glycol is used for illustration

    Approximate Input-Output Linearization of Nonlinear Systems Using the Observability Normal Form

    Get PDF
    Abstract The problem of controlling nonlinear nonminimum-phase systems is considered, where standard input-output feedback linearization leads to unstable internal dynamics. This problem is handled here by using the observability normal form in conjunction with input-output linearization. The system is feedback linearized upon neglecting a part of the system dynamics, with the neglected part being considered as a perturbation. A linear controller is designed to accommodate the perturbation resulting from the approximation. Stability analysis is provided based on the vanishing perturbation theory

    Combined On-Line and Run-to-Run Optimization of Batch Processes with Terminal Constraints

    Get PDF
    This paper describes the optimization of batch processes in the presence of uncertainty and constraints. The optimal solution consists of keeping certain path and terminal constraints active and driving the sensitivities to zero. The case where the terminal constraints have a larger bearing on the cost than the sensitivities is considered, for which a two-time-scale methodology is proposed. The problem of meeting the active terminal constraints is addressed on-line using trajectory tracking, whilst pushing the sensitivities to zero is implemented on a run-to-run basis. The paper also discusses the run-to-run improvement of trajectory tracking via iterative learning control. The proposed methodology is illustrated in simulation on a batch distillation system

    DIRECTIONAL INPUT ADAPTATION IN PARAMETRIC OPTIMAL CONTROL PROBLEMS

    No full text
    • …
    corecore