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Abstract: Iterative learning control (ILC) is a technique to realize system inversion
in a run-to-run manner. Though most of the techniques presented in the literature
consider zero tracking error between the desired and achieved outputs, perfect
inversion is often not feasible and in many cases not even desirable. Approximate
inversion with good convergence and robustness properties (at the cost of a nonzero
tracking error) has been proposed by using a forgetting factor on the input of the
previous run. In this paper, approximate inversion is achieved by shifting the input
of the previous run backwards in time. In addition, anticipatory ILC and current
cycle feedback are used. The advantage of input shift over the use of a forgetting
factor is that, when the reference trajectory is constant and the system stable,
the tracking error decreases with run time. The proposed scheme is illustrated in
simulation on a batch distillation system.

Keywords: Batch processes, Iterative learning control, Run-to-run control, Batch
distillation.

1. INTRODUCTION

Iterative learning control (ILC) has been devel-
oped in order to improve the tracking performance
of repetitive processes (Arimoto et al., 1984).
This is accomplished by utilizing the tracking
error of the previous run to update the input
of the current run. ILC has been successfully
applied in robotics (Arimoto et al., 1984; Kuc
et al., 1991; Wang, 2000) and in batch chemical
processing (Lee et al., 1996; Choi et al., 1996; Lee
et al., 1999; Xu et al., 2001).

The various ILC methods that have been re-
ported in the literature can be classified into two
main categories: (i) schemes with zero tracking
error (Kuc et al., 1991; Xu et al., 1995), and
(ii) those with nonzero tracking error (Arimoto et
al., 1990; Chien and Liu, 1994). System inversion
is realized in the former, while the inversion is only
approximated in the latter. Though the nonzero
error techniques have the disadvantage of a resid-

ual error, they typically show better convergence
and robustness properties (Arimoto et al., 1990).

The standard technique for approximate inversion
is to have a forgetting factor in the input update
(Arimoto et al., 1990). This causes the track-
ing error to be nonzero over the entire interval.
However, the main difficulty with the feasibility
of system inversion arises during the first part
of the trajectory due to unmatched or varying
initial conditions (Lee and Bien, 1991; Heinzinger
et al., 1992). After a certain catch-up time, trajec-
tory following is relatively easy. Thus, the idea is
to allow a nonzero tracking error early in the run
and have the error decrease progressively with the
run time t. This can be achieved with an input
shift. The idea of a shift comes from anticipatory
ILC techniques that use a shift in the error of the
previous run (Park et al., 1998; Wang, 2000).

The first ILC approaches used only the error
from the previous run and thus could only handle
repetitive disturbances. The addition of current
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cycle feedback has been proposed to handle non-
repetitive disturbances (Xu et al., 1995). The
general ILC scheme proposed in this paper will
include the following aspects: (i) input shift, (ii)
error shift, and (iii) current cycle feedback.

The paper is organized as follows. Section 2 re-
views ILC schemes and studies convergence condi-
tions and the residual tracking error. In Section 3,
a novel ILC scheme that shifts both the error and
the feedforward trajectory of the previous cycle is
proposed. A batch distillation system is presented
as an application in Section 4, and conclusions are
drawn in Section 5.

2. GENERAL ILC FORMULATION

2.1 Problem Formulation

In this section, a general ILC law is formulated
in order to classify the common ILC schemes. For
simplicity of notation, the following single input,
single output system is considered in operator
notation:

yk = Guk + ȳ (1)

where uk and yk represent the input and output
trajectories in the run k, G is the operator repre-
senting the system, and ȳ the response to initial
conditions. Note that the input trajectory uk and
the output trajectory yk are defined for the run
time t ∈ [0, tf ], where tf is the final time of the
run.

The idea of ILC is to improve trajectory tracking
for repetitive processes by utilizing the previous
cycle tracking error. The ILC update law for the
input uk+1 in the next run is given as

uk+1 = Auk + Bek, ek = yref − yk (2)

where yref is the reference trajectory to be tracked
and A and B are operators applied to the previous
cycle input and tracking error trajectories, respec-
tively.

2.2 Convergence

An ILC law is convergent if the following limits
exist:

lim
k→∞

yk = y∞ and lim
k→∞

uk = u∞ (3)

Since the converged output trajectory y∞ is not
necessarily equal to the reference trajectory yref ,
the residual error can be nonzero.

One way of ensuring convergence is for the relation
between uk and uk+1 to be a contraction mapping
in some appropriate norm | · |:

|uk+1| ≤ ρ|uk|, 0 ≤ ρ < 1 (4)

Using (1) in (2) gives:

uk+1 = (A − BG)uk + B(yref − ȳ) (5)

Note that (yref − ȳ) does not represent an error
term as in (2), but the difference between two
exogeneous signals, the reference trajectory and
the response to initial conditions. Also, contrary
to (2) where ek depends on uk, (yref − ȳ) is
independent of uk. Since the convergence of the
algorithm depends on the homogeneous part of
(5), the condition for convergence is:

|A − BG| < 1 (6)

2.3 Residual Error

If the input trajectory converges to uk = uk+1 =
u∞, (5) gives:

u∞ = (I − A + BG)−1 B(yref − ȳ) (7)

The residual tracking error is then given by:

e∞ = yref − (Gu∞ + ȳ)

=
(

I − G (I − A + BG)
−1

B
)

(yref − ȳ)(8)

Multiplying both sides with B and rearranging,
this equation can be rewritten as:

Be∞ = (I − A) (I − A + BG)
−1

B(yref − ȳ) (9)

Note that the error term Be∞ is zero when A = I
and nonzero otherwise. When B is a derivative
operator and A = I, ė∞ will be zero, but not e∞.
In other words, integral action along the run index
k is needed for zero error. Zero error implies that
system inversion has been achieved iteratively.
However, methods with nonzero error might show
better convergence properties.

2.4 Current Cycle Feedback

In conventional ILC schemes, only the previous
cycle tracking error is used to adjust the input in
the current cycle. To reject perturbations during
a run, the error occuring during the current cycle
need to be used as well. From the point of view
of convergence and error analysis, these modified
schemes simply correspond to different choices of
the operators A and B in (2) as will be shown
next. Let



A B ILC type Literature

I kD derivative (Arimoto et al., 1984; Heinzinger et al., 1992)
I k proportional (Saab, 1994)
I k + k̄D proportional-derivative (Kuc et al., 1991)
I k∆ anticipatory (Park et al., 1998; Wang, 2000)

(I+CG)−1(Ā+CG) (I+CG)−1(B̄+(I−Ā)C) current cycle feedback (Xu et al., 1995; Jang et al., 1995)
I (GT QG + R)−1GT Q quadratic criterion based (Amann et al., 1996; Lee et al., 2000)
βI k forgetting factor (Arimoto et al., 1990; Chien and Liu, 1994)

(I+CG)−1(∆+CG) (I+CG)−1(k∆+(I−∆)C) input shift, anticipatory, present paper
current cycle feedback

Table 1. ILC schemes with selected references (k, k̄: proportional controllers, D:
differentiation operator, ∆: shift operator, Q, R: weighting matrices, 0 ≤ β < 1:

forgetting factor).

uk+1 = uff
k+1 + ufb

k+1 (10)

uff
k+1 = Āuff

k + B̄ek, ufb
k+1 = Cek+1 (11)

where the superscripts (.)ff and (.)fb represent
the feedforward and feedback parts of the input,
and Ā, B̄ and C are operators. Expressions (10)
and (11) can be combined with (1)-(2) to give:

uk+1= (I + CG)−1(Ā(I + CG) − B̄G)uk +

(I + CG)−1(B̄ + (I − Ā)C)(yref − ȳ) (12)

which is of the form (5) with A = (I +CG)−1(Ā+
CG) and B = (I + CG)−1(B̄ + (I − Ā)C). Thus,
the convergence condition and residual error can
be analyzed using (6) and (8), respectively. Note
that A and B are now functions of G due to the
current cycle feedback.

2.5 Overview of ILC schemes

The various ILC schemes reported in the litera-
ture can be viewed as special cases of the general
scheme presented in (5). They correspond to dif-
ferent choices of the operators A and B, as this
was done in (12) for the current cycle feedback.
Table 1 gives an overview of some ILC schemes
and corresponding references.

The ILC approach first described by (Arimoto et
al., 1984) uses the error derivative in the ILC
law, i.e. A = I, B = kD, where k is a propor-
tional controller and D the differentiation opera-
tor. Since numerical differentiation leads to noise
amplification, proportional ILC was proposed, i.e.
B = k. However, the convergence of proportional
ILC was shown for a more restrictive class than
for the derivative counterpart (Saab, 1994). Also,
proportional derivative controllers were proposed,
B = k+k̄D (Kuc et al., 1991). Another possibility
that has been explored is a shift in the error
trajectory B = k∆, where ∆ is the shift operator
(Wang, 2000). Since a time shift in discrete time
corresponds to a differentiation, the anticipatory
ILC scheme combines the robustness of derivative
ILC with the low noise amplification of propor-
tional ILC.

As discussed earlier, schemes with current cycle
feedback can be cast in the above framework as
well. In particular, the schemes proposed in (Xu et
al., 1995) and (Jang et al., 1995) correspond to the
choice Ā = I, and arbitrary B̄ and C. Note that
the choice Ā = I results in A = I. Current cycle
feedback is also used in ILC based on a quadratic
performance criterion (Amann et al., 1996).

A simple way of having a nonzero tracking error,
and thus enforcing only approximate inversion, is
to use a forgetting factor (Arimoto et al., 1990),
A = βI with β < 1. Such a scheme has been
shown to provide more robustness.

The idea of this paper is to use a non-identity
operator for A so as to accept approximate inver-
sion but improve convergence and robustness. At
the same time, it is desirable to have the residual
error, which could be large at the beginning of the
run, get small towards the end of the run. Such a
situation can be created by using A = ∆ as will
be shown in the next section.

3. ANTICIPATORY ILC WITH INPUT SHIFT
AND CURRENT CYCLE FEEDBACK

Anticipatory ILC applies a shift to the error from
the previous cycle. In the following, the use of an
additional time shift of the feedforward input in
order to increase robustness will be investigated.
This idea was first used in (Welz et al., 2004),
with the same shift for the error and the input.
The goal of this paper is to extend this idea and
use different shifts for the error and the input.

The proposed ILC approach has three compo-
nents: (i) shift of the feedforward part of the
input, (ii) shift of the previous cycle error, and
(iii) current cycle feedback. The iterative update
law can be written as:

uk+1(t) = uff
k+1(t) + kfbek+1(t) (13)

where kfb is the proportional controller used in
the current cycle feedback.



The feedforward part of the current input consists
of shifted versions of the feedforward part of the
previous input and the previous cycle tracking
error:

uff
k+1(t) = uff

k (t + δu) + kffek(t + δe) (14)

where kff is the proportional feedforward con-
troller, δu the time shift of the feedforward tra-
jectory and δe the time shift of the previous run
error trajectory. This defines the signals uff

k (t)

and eff
k (t) up to the times (tf − δu) and (tf − δe),

respectively. The remaining parts of these signals
are kept constant at the values uff

k (tf − δu) and
ek(tf − δe). In operator notation, the introduced
shifts are expressed with the shift operators ∆u

and ∆e:

uff
k+1 = ∆uuff

k + kff∆eek (15)

Thus, Ā = ∆u, B̄ = kff∆e and C = kfb, and
from (12), A = (I + kfbG)−1(∆u + kfbG) and
B = (I + kfbG)−1(kff∆e + (I − ∆u)kfb). Hence,
the convergence condition follows from (6):

∣

∣(I + kfbG)−1
(

∆u(I + kfbG) − kff∆eG
)∣

∣ < 1

(16)

and the error term (I − kfbG)Be∞ from (9):

(kff∆e+(I − ∆u)kfb)e∞ = (I − ∆u)
(

(I − ∆u)(I + kfbG) + kff∆eG
)−1

(kff∆e + (I − ∆u)kfb)(yref − ȳ) (17)

It is seen that the residual error is zero if ∆u = I
(no shift of the feedforward input). However, the
main interest for using an input shift, instead of
a scalar β < 1, is the possibility to make e∞(tf )
close to zero. In other words, the error can be
shaped within the run.

The error term has the form Se∞ = (I −
∆u)T (yref − ȳ), where S and T are appropriate
operators. The term (I − ∆u) corresponds to a
differentiation since it approximates the deriva-
tive using forward difference. If the operator T
is stable, then the trajectory T (yref − ȳ) will
approach a constant value with increasing run
time t. Therefore, its differentiation gives a zero
error. However, since the batch time tf is finite,
it cannot be guaranteed that the error will indeed
be zero at tf .

Such an error shaping is particularly interesting
when the initial conditions do not correspond to
the desired reference trajectory. Without direct
transmission from input to output in System (1),
the initial error cannot be reduced by proportional
ILC. Instead, the initial error add up from run

to run, and convergence cannot be guaranteed.
Direct transmission can be obtained by derivative
ILC (Heinzinger et al., 1992), so that the initial
error is reduced from run to run. For anticipa-
tory ILC, Chen and Wen (1999) have proposed
initial state learning to compensate the effect
of differences in initial conditions. On the other
hand, Saab (1994) has shown convergence with
the use of a forgetting factor. With the input shift
presented in this paper, an initial error can be
tolerated since time is provided for the system to
catch up with the desired trajectory.

4. APPLICATION TO A BATCH
DISTILLATION SYSTEM

4.1 Problem formulation

A binary batch distillation system is utilized to il-
lustrate in simulation the developments of the pre-
vious sections. This example has been described
in Welz et al. (2004), but the main features are
recalled here for completeness.

Under typical assumptions for simple distillation
models, a column with p equilibrium stages is
considered. Writing molar balance equations for
the holdup in the reboiler and for the liquid on the
various stages and in the condenser, the following
model of order (p + 2) is obtained:

Ṁ1 =−(1 − r)V (18)

ẋ1 =
V

M1
(x1 − y1 + rx2) (19)

ẋi =
V

Mi

(yi−1 − yi + r (xi+1 − xi)) (20)

ẋc =
V

Mc

(yp − xc) (21)

with i = 2, . . . , p, xi the molar liquid fraction, yi

the molar vapor fraction, Mi the molar holdup on
Stage i, V the boilup rate and D the distillate
flowrate. Stage 1 refers to the reboiler and Stage
p to the top of the column. Mc is the holdup in
the condenser. The internal reflux ratio r = V −D

V
,

is considered as the manipulated variable. The
vapor-liquid equilibrium relationship is:

yi =
αxi

1 + (α − 1)xi

, i = 1, · · · , p (22)

where α is the relative volatility. The model pa-
rameters and the initial conditions are given in
Table 2.
The composition of the accumulated distillate,
xd, which is measured with the sampling time
Ts = 0.1 h, is given by:

xd(t) =

∑p

i=1 xi(t)Mi(t) − xi(0)Mi(0)

M1(t) − M1(0)
(23)



p 10 xd,des 0.9 kmol/kmol
α 1.6 M1(0) 100 kmol

Mi 0.2 kmol x1(0) 0.5 kmol/kmol
Mc 2 kmol xi(0) 0.5 kmol/kmol
V 15 kmol/h xc(0) 0.5 kmol/kmol

Table 2. Model parameters and initial
conditions, i = 2, · · · , p

A batch is divided into 2 intervals of operation:

(1) Start-up phase with full reflux, r = 1, t =
[0, ts], ts = 1.415 h.

(2) Distillation phase, r ∈ (0, 1), t = [ts, tf ],
tf = 10 h.

The objective is to track a reference trajectory
for the distillate purity xd(t) in Interval 2. This
trajectory ends up at the desired distillate purity
at final time, xd,des. Meeting the purity constraint
can then be realized by closely tracking this ref-
erence. The reference trajectory is chosen to be
linear with xd,ref (ts) = 0.925 kmol/kmol and
xd,ref (tf ) = 0.9 kmol/kmol. The accumulated
distillate purity xd(t) is assumed to be measurable
once some distillate has been collected in Interval
2. The initial feedforward trajectory for iterative
learning schemes is also linear with r(ts) = 0.898
and r(tf ) = 0.877.

In order to obtain a realistic test scenario, the
following uncertainty is considered:

- Perturbation: Boilup rate equally distributed
in the range V = [13 17] kmol/h, changed
every 0.5 h.

- Measurement noises: Product composition xd

with 5% multiplicative gaussian noise.

The values of the squared tracking error
∑tf

t=ts
e(t)2

and the final tracking error e(tf) are averaged over
20 realizations of the perturbation and measure-
ment noise. Also, the variance ve(tf ) of the residual
error is calculated from 20 realizations.

4.2 Implementation of trajectory tracking schemes

The tracking error cannot be reduced to zero be-
cause of a nonzero initial tracking error (xd(ts) 6=
xd,ref (ts)) arising from uncertainties in the start-
up phase. As a consequence, the methods assum-
ing zero initial tracking error do not converge in
this example. Instead, a nonzero tracking error has
to be allowed in order to guarantee convergence.
This can be accomplished by applying a forgetting
factor or a time shift of the feedforward input.

4.2.1. Iterative learning control without on-line
feedback (ILC): Three ILC schemes without on-
line feedback are considered:

• (ILC β = 0.999): A forgetting factor β is
applied to the feedforward input trajectory
in (11) with Ā = β and B̄ = kff .

• (ILC δu = 1 h, δe = 1 h): The same large
shift is applied to the feedforward input and
the error in (14).

• (ILC δu = 0.25 h, δe = 0 h): A smaller shift of
the feedforward input trajectory is imposed
and the error trajectory is not shifted in (14).

The run-to-run gain kff = 0.1 kmol/kmol was
determined as a compromise between robustness
and performance. ILC with forgetting factor con-
verges after 30 runs, while the methods with time
shift of the trajectories converge after 25 runs
(Figure 1). The residual error is slightly smaller
with the latter methods, especially when the time
shift of the feedforward trajectory is reduced to
δu = 0.25 h (Table 3).
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Fig. 1. Evolution of the squared tracking error for
ILC methods without current cycle feedback.

Strategy
∑tf

t=ts
e(t)2 e(tf ) ve(tf )

[kmol2/kmol2] [kmol/kmol] [kmol2/kmol2]

ILC β = 0.999 0.874 +0.0065 4.1 · 10−05

ILC δu =1h, 0.883 -0.0022 3.5 · 10−05

δe =1h
ILC δu =0.25h, 0.874 -0.0005 3.0 · 10−05

δe =0h

FB 0.869 -0.0069 1.5 · 10−05

FB+ILC 0.865 -0.0053 3.0 · 10−05

β=0.999
FB+ILC 0.865 -0.0048 2.7 · 10−05

δu =1h, δe =1h
FB+ILC 0.864 -0.0036 2.0 · 10−05

δu =0.25h, δe =0h

Table 3. Comparison of the various
tracking schemes after the 30th run
in terms of squared tracking error
∑tf

t=ts
e(t)2, tracking error at final time

e(tf ) and its variance ve(tf ).

4.2.2. ILC with current cycle feedback (FB+ILC):
The on-line feedback utilized is the PI con-

troller:

r(t) = rff (t)−kp



e(t)+ki

t
∫

ts

e(τ)dτ



 (24)

where rff is the feedforward term. The parame-
ters kp = 8 kmol/kmol and ki = 0.02 1/h were



tuned manually. The error does not reduce to zero
since integral action is not sufficient to drive it to
zero within the finite time of the batch. Also, in-
creasing the gains for faster error reduction causes
instability.

Three ILC schemes are compared as in Section
4.2.1, but now with the additional current cycle
feedback. Though the squared tracking errors are
similar for all on-line schemes, the final error can
be reduced using the time shift δu = 0.25 h (Table
3). The residual error with current cycle feedback
and δu = 0.25 is larger than that without feed-
back, but its variance is smaller, because within-
run perturbations can be compensated.

5. CONCLUSION

This paper has provided an overview of ILC
schemes with general conditions for convergence
and an analysis of the residual tracking error.
A new scheme that consists of anticipatory ILC
with a shift for both the feedforward part of
the input and the error trajectory and current
cycle feedback has been presented. By allowing a
nonzero residual error, this scheme provides good
robustness properties. In contrast to ILC with
a forgetting factor, which also allows a nonzero
residual error, the proposed scheme has been
shown to reduce the error as a function of run time
for a constant input trajectory. This property is
useful for batch processes, where often the initial
conditions are uncertain and a constraint has to be
met at final time. The proposed scheme has been
applied to a simulated batch distillation system
in the presence of uncertainties, where tracking of
a distillate purity reference is utilized to meet the
terminal constraint on distillate purity. It has been
shown that shifting the input trajectory results in
a smaller residual error than using a forgetting
factor.
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