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Abstract: This paper describes the optimization of batch processes in the presence
of uncertainty and constraints. The optimal solution consists of keeping certain
path and terminal constraints active and driving the sensitivities to zero. The
case where the terminal constraints have a larger bearing on the cost than the
sensitivities is considered, for which a two-time-scale methodology is proposed.
The problem of meeting the active terminal constraints is addressed on-line
using trajectory tracking, whilst pushing the sensitivities to zero is implemented
on a run-to-run basis. The paper also discusses the run-to-run improvement of
trajectory tracking via iterative learning control. The proposed methodology is
illustrated in simulation on a batch distillation system.
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1. INTRODUCTION

A frequent objective in batch process optimization
is the maximization of product yield at final time
while satisfying path and terminal constraints.
The standard approach in the presence of uncer-
tainties is to implement a conservative open-loop
strategy that leads to feasible but sub-optimal
operation. However, the measurements available
during the batch or at batch end could be used to
improve the performance by reducing this conser-
vatism (Srinivasan et al., 2003a). Depending on
how these measurements are used, two method-
ologies can be distinguished:

(1) Explicit optimization schemes update a model
of the process using the available mea-
surements, and the refined model is used
in the subsequent optimization step. This
method suffers from the typical conflict be-
tween parameter estimation and optimiza-

tion (Roberts and Williams, 1981; Srinivasan
and Bonvin, 2002).

(2) Implicit optimization schemes directly use
the measurements in a feedback control law
to determine the optimal inputs (Srinivasan
et al., 2003a). This method, which has the ad-
vantage of easy and robust implementation,
is the subject of this paper.

The implicit optimization scheme that consists
of tracking the necessary conditions of optimal-
ity (NCO-tracking scheme) is considered here
(Srinivasan et al., 2003a). The main emphasis is
on meeting the active constraints since much can
be gained by keeping them active. Keeping the
path constraints active is fairly straightforward
using on-line feedback, while meeting the terminal
constraints is less intuitive.

One possibility to enforce the active terminal
constraints is via run-to-run control by using only
batch-end measurements (Francois et al., 2002).
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However, this approach is slow and does not use
the information available during the batch. Also,
it cannot handle disturbances occurring during
the batch. Hence, the problem addressed here
is the use of on-line measurements to guarantee
the satisfaction of terminal constraints, thereby
ensuring feasible and near-optimal operation.

Meeting terminal constraints using mid-course
corrections requires a model to predict the values
of the constrained quantities at final time (Yabuki
and MacGregor, 1997). Since such a model is
rarely available in batch processing, this paper
proposes to use trajectory tracking instead.

The more important problem in terms of perfor-
mance, i.e meeting the terminal constraints, is
addressed on-line using trajectory tracking. Also,
the performance of trajectory tracking is improved
using Iterative Learning Control (ILC) techniques
(Moore, 1993; Lee et al., 2000). The sensitivity
aspect is addressed via trajectory adaptation on
a run-to-run basis. Thus, the proposed scheme
encompasses the following two parts:

(1) Tracking of reference trajectories (on-line +
run-to-run): This part consists of choosing
and tracking some feasible reference trajec-
tories whose main purpose is to steer the
process towards the terminal constraints. For
this, an on-line feedback strategy is used. In
addition, ILC can help improve the feedfor-
ward inputs for the current run using mea-
surements from the previous run by exploit-
ing the repetitive nature of batch processes.

(2) Adaptation of the reference trajectories (run-
to-run): Though the terminal constraints can
be met by steering the process along appro-
priate trajectories, the shape of these trajec-
tories is important for optimality. Here, the
reference trajectories are parameterized, and
the corresponding parameters are adapted on
a run-to-run basis in order to drive the cost
sensitivities to zero.

The paper is organized as follows: In Section 2,
the concept of measurement-based optimization
is briefly revisited. Section 3 describes how trajec-
tory tracking can be used to handle terminal con-
straints. Section 4 deals with improved trajectory
tracking using ILC, whereas the run-to-run adap-
tation of the reference trajectories is presented in
Section 5. As an illustration, the optimization of
a batch distillation system is evaluated in Section
6, and conclusions are presented in Section 7.

2. MEASUREMENT-BASED OPTIMIZATION
VIA NCO-TRACKING

The following terminal-cost optimization problem
for the kth batch is considered:

min
uk(t)

φ(xk(tf ), θ) (1)

s.t. ẋk = F (xk, uk, θ) + vk(t), xk(0) = xic
k

yk = H(xk , uk, θ) + wk(t)

S(xk, uk, θ) ≤ 0, T (xk(tf ), θ) ≤ 0

where φ is the scalar cost function, xk the states
with the known initial conditions xic

k , uk the
inputs, yk the outputs, and tf the final time. F
are the functions describing the system dynamics,
S the path constraints, T the terminal constraints,
θ the uncertain parameters, vk the process noise,
and wk the measurement noise.

Applying Pontryagin’s Maximum Principle (PMP)
to (1) results in the following Hamiltonian and
adjoint equations:

Hk = λT
k F + µT

k S (2)

λ̇T
k =−

∂Hk

∂xk

, λT
k (tf ) =
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∂xk

∣
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∣
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∣

∣

∣

∣

tf

(3)

where λk(t) 6= 0 are the adjoint states, µk(t) ≥ 0
the Lagrange multipliers for the path constraints,
and νk ≥ 0 the Lagrange multipliers for the ter-
minal constraints. The first-order necessary con-
ditions of optimality (NCO) can be partitioned as
follows (Srinivasan et al., 2003b):

Path Terminal

Constraints µT
k S = 0 νT

k T = 0

Sensitivities
∂Hk

∂uk

= 0
∂(φ + νT

k T )

∂xk

∣

∣

∣

∣

tf

− λT
k (tf )= 0

(4)

Note that the NCO are made of two parts (con-
straints and sensitivities), each with two compo-
nents (path and terminal). These NCO remain
valid also in the presence of uncertainty.

The optimal solution is typically discontinuous
and characterized by various intervals that are ei-
ther constraint- or sensitivity-seeking (Srinivasan
et al., 2003b). The NCO-tracking scheme enforces
the four conditions in (4), some on-line and the
others over successive batches.

3. MEETING TERMINAL CONSTRAINTS
USING TRAJECTORY TRACKING

While enforcing the NCO, the natural partition-
ing of the tasks is to deal with the path conditions
(first column of (4)) within the run and handle
the terminal conditions (second column of (4))
on a run-to-run basis (Francois et al., 2002). This
seems natural since the measurements related to
the terminal quantities are only available at the
end of the run. However, the idea used here is
to deal with all the constraints (first row of (4))
within the run and handle the sensitivities (second



row of (4)) on a run-to-run basis. This way, on-line
tracking is used to meet the path and terminal
constraints and run-to-run update to drive the
sensitivities to zero. Without loss of generality,
assume that all terminal constraints are active,
the non-active ones being simply discarded.

The advantage of this partitioning is that each
batch is feasible, though the operation may not be
optimal. Also, from an optimization perspective,
there is often considerably more to gain by meet-
ing the active constraints compared to pushing
the sensitivities to zero (Srinivasan et al., 2003a).
Hence, the more important problem is addressed
on-line, and the rest is worked out over successive
batches.

Unfortunately, on-line measurements do not di-
rectly provide information regarding the terminal
constraints, and some sort of prediction or extrap-
olation is needed (Yabuki and MacGregor, 1997).
Since such a prediction is not always accurate
due to model mismatch and disturbances, the
idea used here is to track feasible reference tra-
jectories, Tref [0, tf ], whose main purpose is to
guarantee meeting the terminal constraints, i.e.
T (x(tf ), θ) = 0 (Welz et al., 2002).

In accordance with the notation T (x(tf ), θ) = 0,
let T (t) represent the values at time t of the
quantities that are constrained at final time. The
tracking presented in this paper requires that T (t)
be measured not only at final time but also during
the run. Then, let Tk[0, tf ] be the trajectories
during the interval [0, tf ] in the kth run. The goal
of tracking is to push Tk[0, tf ] towards Tref [0, tf ].
Various aspects involved in the tracking of these
trajectories will be discussed in the next section.
Also, in the presence of measurement noise, safety
margins or backoffs need to be introduced so that
the terminal constraints are not violated.

It is interesting to note the twist in concept:
Instead of building a model capable of predict-
ing accurately the values T (x(tf ), θ) and adjust-
ing the model for the prediction to match the
reality, “appropriate” trajectories Tref [0, tf ] are
proposed and the inputs adjusted so that the
reality matches the proposed trajectories. An-
other difference arises from the fact that, when
a model is used to predict the final values, the
inputs need to be computed via optimization to
enforce T (x(tf ), θ) = 0. Here, this correction step
is part of the trajectory tracking mechanism since
Tref (x(tf )) = 0 by construction.

4. TRAJECTORY TRACKING USING ILC

This section addresses the problem of tracking
given trajectories using information from the cur-
rent and previous runs. Measurements from the

current run are used for on-line feedback correc-
tions, while those from earlier runs act on the
feedforward part of the inputs. Thus, the inputs
for the kth run have two parts, uk = uff

k + ufb
k ,

where the superscripts (.)ff and (.)fb are used for
the feedforward and feedback parts, respectively .

The trajectory tracking problem using informa-
tion from previous runs has been addressed in
the literature under the name Iterative Learn-
ing Control (ILC). ILC was first proposed in the
robotics community as a means to successively
reduce the tracking errors in repetitive dynamic
processes (Arimoto et al., 1984). In the ILC liter-
ature, the run-to-run aspect was developed before
studying its interaction with the on-line (within-
run) adaptation. A similar line of presentation will
be followed in this section.

4.1 Run-to-run adaptation in ILC

Consider a batch process with the inputs u and
the outputs T . Let the input-output relationship
for the kth run be, Tk[0, tf ] = G uk[0, tf ], where G
is an operator describing the process, and uk[0, tf ]
and Tk[0, tf ] represent the time trajectories of u
and T, respectively.

The objective of ILC is to compute uk[0, tf ] so
that Tk[0, tf ] → Tref [0, tf ] as k → ∞. This
eventually means system inversion, i.e. finding
the inputs u∞[0, tf ] that produce the outputs
Tref [0, tf ]: u∞[0, tf ] = G−1Tref [0, tf ]. The solu-
tion is straightforward if G is known and invert-
ible. Unfortunately, this is rarely the case.

Instead of direct inversion, ILC represents an it-
erative inversion process that does not require
a model since process data are utilized. Yet, an
inverse must exist, i.e. it must be verified that
the proposed trajectories Tref [0, tf ] are feasible
so that the sought inputs do exist. The basic ILC
algorithm updates the feedforward input trajecto-
ries from one run to the next using past control
inputs and measurements:

uff
k+1[0, tf ] = uff

k [0, tf ] + Kffek[0, tf ] (5)

where Kff is an operator applied to the previous
tracking errors, ek[0, tf ] = Tref [0, tf ] − Tk[0, tf ],
and possibly their derivatives. With the above
update, the sufficient condition for convergence
with zero tracking errors is:

‖I −KffG‖ < 1 (6)

where ‖·‖ denotes the induced operator norm. For
this condition to be verified, KffG needs to have
a causal inverse (Moore, 1993). This last condition
can be interpreted as follows: (i) if G is causal with
non-zero relative degree, then a non-causal Kff is



required for convergence (Lee et al., 2000), or (ii)
if G is of zero relative degree, then a causal Kff

with zero relative degree can be used.

Since exact system inversion may lead to ill-
conditioning, the problem of approximate inver-
sion has been studied, i.e. convergence with non-
zero, yet small, residual errors (Moore, 1993).
For this to happen, and in contrast to (5) that
represents an integral law from a run-to-run view
point, the ILC adaptation law does not need an
integral term. It follows that the conditions for
convergence are much less restrictive.

An extension to the update law (5) is to consider
not only the last, but several previous error trajec-
tories (Chen and Wen, 1999; Bien and Huh, 1989).
However, recent results show that most higher-
order ILC schemes can be reduced to first-order
ones (Phan and Longman, 2002).

4.1.1. Types of ILC algorithms: In traditional
ILC algorithms, the operator Kff is either of the
P-type (proportional) or D-type (derivative). The
D-type algorithms typically use Kff = k drek

dtr ,
where r is the system relative degree and k a
gain. Though the D-type algorithms are more
sensitive to noise, from a theoretical perspective,
they provide better convergence results since the
algorithms are intrinsically non-causal.

The derivative action can be replaced by antic-
ipation in time (Wang, 2000). For discrete-time
systems, Amann et al. (1996) proposed to shift
the error trajectories of the previous run back-
wards in time by rTs (anticipation), where r is the
system relative degree and Ts the sampling time.
The same idea is also used to cope with varying
initial conditions (Sun and Wang, 2003) or in the
context of time-delay systems (Hideg, 1996; Park
et al., 1998).

Along the same lines, this paper uses anticipation
in time. Instead of considering the process map
uff

k [0, tf ] → Tk[0, tf ], the map uff
k [0, tf − δ] →

Tk[δ, tf ] is used, where δ is a delay term. For
the inverse system, this delay corresponds to a
prediction and can be viewed as the non-causality
term needed in the controller Kff for the sake
of convergence with zero tracking errors. Larger
delays make the control inputs less aggressive. The
ILC control law becomes:

uff
k+1[0, tf − δ] = uff

k [δ, tf ] + Kffek[δ, tf ] (7)

The remaining interval uff
k+1[tf−δ, tf ] is approxi-

mated as the constant value uff
k (tf ).

From another view point, the delay δ is the time
required by the process to catch up with the refer-
ence trajectories. Since, due to unmatched initial
conditions, it is usually not possible to follow

Tref [0, tf ] right from the start, the update law (7)
uses only Tref [δ, tf ]− Tk[δ, tf ] for adaptation.

The major difference with the results presented
in the literature is that, in (7), uff

k is also shifted
in time. Hence, there is no integral action from a
run-to-run perspective, thereby leading to residual
tracking errors, i.e. to only approximate inversion.

4.2 Within-run adaptation in ILC

The ILC laws (5) and (7) represent feedback on
a run-to-run basis, but they are clearly open loop
for the current run. Therefore, within-run distur-
bances cannot be compensated. By adding on-
line feedback to ILC, deviations from the desired
trajectories can be handled instantaneously in the
current run. Since the resulting tracking errors are
smaller than in conventional ILC, convergence is
faster and more robust to uncertainty and noise.
Furthermore, within-run stability can be guaran-
teed for unstable systems. The inputs then be-
come:

uk+1(t) = uff
k+1(t) + Kfbek+1(t) (8)

For this update law, Kuc et al. (1991) provide con-
vergence conditions based on Lyapunov theory.
Since, due to feedback, the plant G is replaced by
(I + GKfb)−1G, the following sufficient condition
for convergence results, compare (Moore, 1999):

‖(I −Kff (I + GKfb)−1G)‖ < 1 (9)

Two important sub-cases can be considered: (a)
Kff = Kfb: For such a case, Xu et al. (1995) have
shown that, with a proportional controller and
under mild conditions, convergence is independent
of the gain. Consequently, a high gain can be
used to obtain fast convergence. Also, Amann et
al. (1996) propose a norm-optimal ILC scheme.
(b) Kff = Kfb + K̄ff : Writing the convergence
condition of the ILC scheme in terms of K̄ff , Jang
et al. (1995) have shown that, with a D-type K̄ff

and in the absence of zero dynamics, the feedback
controller has no influence on the convergence
condition but convergence may be faster.

5. RUN-TO-RUN TRAJECTORY UPDATE
FOR OPTIMALITY

The last two sections have shown that, if the
quantities T (t) can be measured or reconstructed
on-line from other measurements and if the track-
ing of Tref [0, tf ] is satisfactory, then the terminal
constraints will be active. However, there remains
an important question: From among the many fea-
sible trajectories that can be proposed to enforce
Tref (tf ) = 0, how can Tref [0, tf ] be chosen in



order to minimize the cost in the sense of Problem
(1)?

Since the constraints are met via trajectory track-
ing, the sensitivities can be pushed towards zero
by adjusting the reference trajectories on a run-
to-run basis. Let the reference trajectories be pa-
rameterized as:

Tref [0, tf ] = T (π). (10)

Note that the parameterization is done for the
reference trajectories and not for the inputs as in
numerical optimization. A parsimonious parame-
terization of the reference trajectories, i.e. with a
small number of parameters, can usually be cho-
sen on the basis of the results of numerical opti-
mization. Approximations using either piecewise-
constant or piecewise-linear intervals often suffice
(Srinivasan et al., 2003b).

The parameters π can be adapted on a run-to-
run basis using a gradient-type update law that
pushes the sensitivities to zero:

πk+1 = πk −Kπ

∂φ

∂π

∣

∣

∣

∣

k

(11)

where Kπ is a gain matrix. The update law re-
quires the knowledge of the sensitivities ∂φ/∂π,
which can be evaluated using finite perturbations.
Though this procedure is slow and experimentally
intensive, it is acceptable here as explained next.
Since the terminal constraints are met, all iter-
ations lead to an acceptable product and, fur-
thermore, the operation is fairly close to being
optimal. Thus, the run-to-run update merely aims
at the last few percent in performance, thereby
making the number of experiments required to
convergence rather immaterial.

The global optimization scheme is depicted in
Figure 1. It has three parts: (i) on-line tracking

of Tref,k(t), (ii) run-to-run update of uff
k [0, tf ],

and (iii) run-to-run update of Tref,k[0, tf ].

The optimization scheme can be looked upon from
two different view points: (a) Trajectory tracking
and trajectory adaptation: The parts (i) and (ii)
belong to the trajectory tracking task, while (iii)
is concerned with trajectory adaptation. (b) On-
line and run-to-run implementation: The part (i)
is implemented on-line, while (ii) and (iii) are
implemented off-line.

6. APPLICATION TO A BATCH
DISTILLATION SYSTEM

6.1 Problem formulation

A binary batch distillation system is used to il-
lustrate in simulation the methodological devel-

opments of the previous sections. The following
assumptions are made: (1) Equimolar overflow,
(2) Constant relative volatility, ideal vapor-liquid
equilibrium, (3) Equilibrium stages, (4) Negligi-
ble vapor holdup, (5) Constant liquid holdup on
stages and in condenser, (6) Total condenser, (7)
Constant boilup rate.

Considering the column with p equilibrium stages
and writing molar balance equations for the
holdup in the reboiler and for the liquid on the
various stages and in the condenser, the following
model of order (p + 2) is obtained:

Ṁ1 =−fdV (12)

ẋ1 =
V

M1
(x1 − y1 + (1− fd) x2) (13)

ẋi =
V

Mi

(yi−1 − yi + (1− fd) (xi+1 − xi))(14)

ẋc =
V

Mc

(yp − xc) (15)

with i = 2, . . . , p, xi the molar liquid fraction,
yi the molar vapor fraction, and Mi the molar
holdup on Stage i. Stage 1 refers to the reboiler
and Stage p to the top of the column. Mc is
the holdup in the condenser. The ratio fd of the
distillate to boilup rate, fd = D

V
, is considered

as the manipulated variable. The vapor-liquid
equilibrium relationship is:

yi =
αxi

1 + (α− 1)xi

, i = 1, · · · , p (16)

where α is the relative volatility. The model pa-
rameters and the initial conditions are given in
Table 1. The composition of the accumulated dis-
tillate, xd, which is measured with the sampling
time Ts, is given by:

xd(t) =

∑p
i=1 xi(t)Mi(t)− xi(0)Mi(0)

M1(t)−M1(0)
(17)

Also, it is assumed that the amount of distillate
available at final time, M1(t0) −M1(tf ), is mea-
sured.

p 10 Ts 0.1 h
α 1.6 M1(0) 100 kmol

Mi 0.2 kmol x1(0) 0.5 kmol/kmol
Mc 2 kmol xi(0) 0.5 kmol/kmol
V 15 kmol/h xc(0) 0.5 kmol/kmol
tf 10 h xd,des 0.9 kmol/kmol

Table 1. Model parameters and initial
conditions, i = 2, · · · , p

The optimization problem consists of maximizing
the quantity of distillate subject to a quality
constraint at final time:

max
fd(t)

J = M1(t0)−M1(tf ) (18)
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0 ≤ fd(t) ≤ 1

xd(tf ) ≥ xd,des

where xd,des = 0.9 kmol/kmol is the desired
distillate composition at the final time tf = 10 h.

The optimal solution consists of 3 intervals (Welz
et al., 2002):

(1) Start-up phase with full reflux, fd = 0.
(2) Distillation phase, fd ∈ (0, 1), where a

compromise between quality and quantity is
sought.

(3) No reflux (fd = 1) in order to remove high
purity distillate from the condenser.

The third interval, whose effect is negligible in the
given example, is not considered here. Let ts be
the switching time between the first two intervals.
fd in the second interval is approximated by a
linear profile with the parameters fd(ts) = l1 and
fd(tf ) = l2 (Figure 2).

In order to obtain a realistic test scenario, the
following uncertainty is considered:

- Parametric uncertainty: Fixed but unknown
relative volatility in the range α = [1.4 1.7].

- Perturbation: Boilup rate equally distributed
in the range V = [13 17] kmol/h, changed
every 0.5 h.

- Measurement noises: Product composition xd

with 5% multiplicative gaussian noise, dis-
tillate quantity J(tf ) with 3% multiplicative
gaussian noise.

The value α = 1.6 is used in all simulations.
However, this value is not disclosed to the various
optimization schemes. In order to be represen-
tative, the measured values of J and xd(tf ) are
averaged over 50 realizations of the perturbation
and measurement noises. For each scheme, a back-
off b is added to the reference trajectory xd,ref

so that the terminal constraint is met in 99% of
the cases. It creates an offset from the original
trajectory towards a higher distillate purity. This
backoff is computed iteratively as in Srinivasan et

al. (2003a). The better the tracking performance
and disturbance rejection, the smaller the backoff.

6.2 Robust optimization

A feasible, but conservative, solution is calculated
as the optimal solution for the smallest value of
α, i.e. αcons = 1.4 and the expected value of V ,
i.e. V̄ = 15 kmol/h. The numerical values for this
conservative solution are tcons

s = 1.415 h, lcons
1 =

0.1020, lcons
2 = 0.1229 and Jcons = 14.48 kmol.

For the sake of comparison, if the value of α
were known and if there were no variations in V ,
the amount of distillate would be much higher,
J∗ = 27.89 kmol.

6.2.1. Open-loop implementation of f cons
d (OL):

When the conservative input is applied open
loop to the true system with α = 1.6, the sepa-
ration is easier, and purer distillate is produced,
xd(tf ) = 0.967 kmol/kmol (Figure 2). However,
the amount of distillate is JOL = 14.34 kmol,
which is quite far from the ideal value that could
be obtained with α = 1.6. Thus, it is possible to
increase the quantity of distillate by reducing its
quality.

Note that the difference between J cons and JOL is
due to the difference in the values for V (constant
at V̄ = 15 kmol/h vs. equally distributed in the
range [13 17] kmol/h).

6.3 Measurement-based optimization

6.3.1. No feedback, run-to-run adaptation of f ff
d

(ILC): The idea is to track the conservative pro-
file xcons

d,ref [0, tf ]. This reference profile is approxi-
mated by a piecewise-linear signal xd,ref (t) with
xd,ref (ts) = xcons

d,ref (ts)+b and xd,ref (tf ) = xd,des+
b, where b is the backoff. Since xd(t) can only
be measured once distillate has been collected,
feedback control is only applied after a delay of
one sample in the second interval. The adaptation
law is similar to (7):



fff
d,k+1[ts, tf−δ] = fff

d,k[ts+δ, tf ] (19)

+Kffek[ts+δ, tf ]

where e(t) = xd,ref (t) − xd(t). The run-to-run
gain Kff = 0.1 kmol/kmol and the shift δ =
1 h were determined as a compromise between
robustness and performance. With the backoff
bILC = 0.0140 kmol/kmol, the distillate quantity
JILC = 24.05 kmol is obtained after 30 runs.

6.3.2. On-line adaptation of f fb
d (FB): Here,

the reference profile xd,ref [ts, tf ] is tracked using
a PI controller :

fd(t) = f cons
d (t)−Kp



e(t)+Ki

t
∫

ts

e(τ)dτ



 (20)

where the conservative input f cons
d is used as

the feedforward term. The tracking performance
using the parameters Kp = 8 kmol/kmol and
Ki = 0.02 1/h is shown in Figure 2. The error
does not go to zero since integral action is not
sufficient to drive it to zero within the finite batch
time. Also, increasing the gains for error reduction
causes instability. With this strategy, the backoff
bFB = 0.0042 kmol/kmol has to be introduced
to meet the terminal constraint in 99% of runs,
and the distillate quantity JFB = 25.41 kmol is
obtained.
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Fig. 2. Open-loop implementation (OL, - - -) and
tracking of xd,ref (FB, —).

6.3.3. On-line and run-to-run adaptation of fd

(FB+ILC): Both the feedforward and feed-
back parts are adapted according to the laws
(19) and (20), respectively. Since the effect of
within-run disturbances are compensated by feed-
back, the backoff can be reduced to bFB+ILC =
0.0057 kmol/kmol compared to bILC = 0.0140
kmol/kmol when feedback was not used. Also,
the convergence is much faster with feedback, and
the distillate quantity JFB+ILC = 25.53 kmol is

obtained after 4 runs. Figure 3 shows an improved
tracking performance compared with that of Fig-
ure 2.
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Fig. 3. On-line tracking of xd,ref upon convergence
of the ILC iterations (FB+ILC).

6.3.4. On-line feedback and trajectory adapta-
tion (FB+TAd): The reference trajectory
xd,ref [ts, tf ] is parameterized using ts and xd,ref (ts)
since xd,ref (tf ) is fixed by the constraint xd,des+b.
Furthermore, since xd,ref (ts) has very little influ-
ence on J , only ts needs to be adjusted.

Starting from the conservative input f cons
d , the

sensitivity of J with respect to the switching
time ts is evaluated experimentally. The following
update law is then used:

ts,k+1 = ts,k −Kt

J(ts,k)− J(ts,k −∆ts)

∆ts
(21)

where ∆ts = 0.1 h is the step size for gra-
dient evaluation, and Kt = 0.008 h2/kmol is
the gain of the update law. With the backoff
bFB+TAd = 0.0042 kmol/kmol, the distillate
quantity JFB+TAd = 25.61 kmol is obtained.

6.3.5. Global scheme (FB+ILC+TAd): The com-
bination of the three adaptations (using the same
parameter values in the update laws) results in the
distillate quantity JFB+ILC+TAd = 25.78 kmol
after 4 runs.

6.4 Comparison of the various strategies

Table 2 provides a comparison of the various im-
plementation strategies. It is seen that the im-
provement is considerable between the open-loop
conservative strategy (OL) and the measurement-
based approaches. This means that tracking of
even the conservative reference xcons

d,ref [0, tf ] leads
to fairly good results.

ILC without on-line feedback cannot compensate
the effect of within-run perturbations, and a larger
backoff is necessary, which limits the performance.
Since, in addition, on-line feedback significantly
increases the rate of convergence of ILC schemes,
it is an important aspect of the global scheme.
Finally, adaptation of the reference results in
further improvement.



Strategy J b
[kmol] [kmol/kmol]

Open loop fcons
d

(OL) 14.34 -

Adaptation of f
ff

d
(ILC) 24.05 0.0140

Adaptation of f
fb

d
(FB) 25.41 0.0042

Adaptation of fd (FB+ILC) 25.53 0.0057
Feedback + traj. ad.(FB+TAd) 25.61 0.0042
Global scheme (FB+ILC+TAd) 25.78 0.0057

Table 2. Comparison of the various op-
timization strategies in terms of cost J
and necessary backoff b for a terminal

constraint satisfaction of 99%.

Note that the implementation schemes presented
here do not use any prior knowledge of the value
of the uncertain parameter, except for its range
that is used to compute the conservative input.

7. CONCLUSION

This paper has considered the class of optimiza-
tion problems where the optimal solution is char-
acterized by active terminal constraints. The main
idea is to track appropriate references on-line in
order to meet the terminal constraints, and to
adapt these references on a run-to-run basis us-
ing experimental sensitivity information. Further-
more, the tracking performance can be improved
by updating the feedforward inputs using ILC.
On the example of a simulated batch distillation
column, the performance could be improved sig-
nificantly compared to robust optimization, which
is the approach typically used in industry.
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