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Abstract

Optimization of bioreactors, and especially the maximization of product yield, has been
studied extensively in the literature. It has been shown that, in many cases, the optimal
solution corresponds to keeping the substrate concentration constant at a value that maximizes
the instantaneous yield. However, in the presence of biomass death, keeping the substrate
concentration constant at this value may lead to biomass extinction, i.e. no active biomass left
in the reactor. In such a case, the optimal solution arises from a compromise between
avoiding extinction and increasing the instantaneous yield. In addition, if the maintenance
term depends on the amount of inactive biomass, the optimal solution requires a time-varying
substrate concentration. These issues are illustrated via the optimization of the batch
filamentous fungi fermentation.

1. Introduction

For centuries, man has employed biological processes to his benefit for the production of
bread, cheese, wine, beer, and yoghurt. Due to the importance of these products, scientists
have studied the way these reactions take place inside the microorganisms and have exploited
their capabilities to perform more complex and more useful transformations (Bailey & Ollis
86). The other major development in biotechnology is the use of mathematical modeling and
subsequent application of control and optimization techniques in order to improve the
performance of bioprocesses. Numerous models of varying complexity have been proposed,
i.e. from simple tendency models to detailed ones that use partial differential equations
(Bailey & Ollis 86, Lee 92).

The optimal feeding strategy in bioreactors depends on the structure of the reaction kinetics
and the interaction between the different reactions. Using a fairly general structure, many
useful results have been derived in (Modak et al. 86, van Impe et al. 94). One key result is
that, in many cases, the final product yield (ratio of the amount of product formed and the
amount of substrate consumed) can be maximized simply by maximizing the same
instantaneously. However, this is not necessarily true with biomass death. In the context of
operational optimization, the death of biomass has rarely been discussed in the literature. The
reason for this negligence is the fact that biomass death does not fundamentally affect the
structure of the solution, unless extinction of biomass becomes important. Extinction is the
phenomenon where the rate of death is larger than the rate of growth and no more active
biomass is left before the end of the batch.

In this paper, a scenario is considered where maximizing the product yield instantaneously
corresponds to extinction of the biomass. The type of kinetics and the interplay between the
parameters that can lead to such a scenario are discussed. It is shown that, with biomass
death, the optimum still corresponds to a constant substrate concentration, but the value is
shifted such that extinction occurs just at the end of the batch. Also, when the inactive
biomass has to be maintained, the optimal substrate concentration is time varying.
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The basic concepts will first be presented using a general model, and later the same will be
illustrated in simulation via the optimization of a batch filamentous fungi fermentation. Here,
the tendency model developed by (Agger et al. 98) will be used. The results show that,
though a more complex system of equations is used, the conclusions drawn from a simple
structural model are indeed valid.

The paper is organized as follows. In the next section, the key aspects of the optimization
problem are discussed using a model with unspecified kinetics. The role of biomass death
with regard to optimization will be dealt with in Section 3. Simulation results from the
filamentous fungi fermentation are presented in Section 4, and conclusions drawn in Section
5.

2. Optimization of Fed-batch Bioreactors

2.1 A General Model with Unspecified Kinetics

The optimization of fed-batch processes with a general model with unspecified kinetics of the
type given below is widely discussed in the literature (Modak et al. 86, van Impe et al. 94):

† 

dmx

dt
= m(s)mx

† 

dms

dt
= -s (s)mx + sf F   

† 

dmp

dt
= p(s)mx     (1)

† 

dV
dt

= F

where V is the volume, ms the mass of substrate, s = ms/V the concentration of substrate, mx
the mass of biomass, x = mx/V the concentration of biomass, mp the mass of product, p = mp/V
the concentration of product, sf the inlet substrate concentration, F the feed flow rate, m(s) the
specific biomass growth rate, s(s) the specific substrate consumption rate, and p(s) the
specific production rate.

The development in this paper relies on certain key concepts that are explained next:

l Maintenance: This corresponds to substrate being consumed to sustain the existing
biomass. Mathematically, it is represented as an additional term in the substrate
consumption rate s. Note that, with this definition, the amount of biomass does not
decrease even when no substrate is present.

l Death of biomass: This corresponds to transforming the (active) biomass into a non-
producing (inactive) form. In this case, it is important to distinguish between the two
forms (active and inactive) since only the active one is useful for product formation.
Inactivation is represented mathematically as a negative term in the specific growth
rate m. Thus, if the substrate concentration s is close to zero, the amount of active
biomass will decrease since the negative term becomes dominant.

l Extinction: If the specific growth rate m is negative, then the quantity of active
biomass reduces and eventually goes (asymptotically) to zero. Note that the amount
of dead biomass does not go to zero but converges to a large constant value. This
phenomenon is similar to washout in continuous reactors, which occurs at high
dilution rates.
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l Extinction limit sext: This is the value of s below which m < 0 and extinction occurs.

2.2 Optimization Problem Formulation and Solution

Consider the terminal-cost optimization problem:

                                                (2)

where J is the scalar performance index and T the vector of terminal equality constraints. The
performance index corresponds to maximizing the final product yield, i.e. the mass of product
formed per g. of substrate consumed. Ideally, the process would stop when dmp/dt reaches
zero. However, this happens only for t Æ  •  because of the exponential decay of mp.
Consequently, to have a finite terminal time, dmp/dt ≥ e > 0 is chosen as a terminal constraint.
The second terminal constraint is related to the desired final volume.

It was shown in (Modak et al. 86, van Impe et al. 94) that the optimal feed rate profile
consists of three types of intervals: (i) maximum feed rate F(t) = Fmax, (ii) minimum feed rate
F(t) = 0, and (iii) sensitivity-seeking arc F(t) = Fsens(t) determined by intrinsic compromises
present in the system.

The derivation of the analytical expression for Fsens(t) is based on Pontryagin’s minimum
principle and is detailed in (Modak et al. 86). However, some of the reasoning is reproduced
here briefly. Model (1) can be written as:

† 

˙ x = f(x) + gF   (3)

where

† 

x =

mx

ms

mp

V

È 

Î 

Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙         

† 

f(x) =

m(s)mx

-s (s)mx

p (s)mx

0

È 

Î 

Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙              

† 

g =

0
sf

0
1

È 

Î 

Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 

The Hamiltonian in this case is:

† 

H = lT [f(x) + gF] = lTf(x) + lTgF =Y (x,l) +F(l)F    (4)

where l, the vector of adjoint variables, satisfies the following dynamics:

† 

˙ l T = -
∂H
∂x

= -lT ∂f(x)
∂x ,

† 

lT (t f ) =
∂J
∂x t f

+ n T ∂T
∂x

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

t f
  (5)

The expressions for F, the switching function, and Y are given in (6) and (7):

† 

dynamic model (1)
Fmin £ F(t) £ Fmax

T =
e -

dmp

dt t f

V (t f ) -Vmax

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

=
e - p(s)mx t f

V (t f ) -Vmax

È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ 

= 0

† 

max
t f , F ( t )

 J =
mp (t f )

ms(0) - ms(t f ) + sf (V (t f ) -V (0))

s.t.
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† 

F( l) = l2sf + l4   (6)

† 

Y( x,l) = (l1m - l2s + l3p )mx
    (7)

The adjoint equations (5) become:
 

† 

˙ l 1 = -(l1m - l2s + l3p)   (8)

† 

˙ l 2 = -(l1 ¢ m - l2 ¢ s + l3 ¢ p )mx /V   (9)

† 

˙ l 3 = 0 (10)

† 

˙ l 4 = -(l1 ¢ m - l2 ¢ s + l3 ¢ p )mxms /V 2 (11)

where m¢ = (∂m/∂s), s¢ = (∂s/∂s), and p¢ = (∂p/∂s). The necessary condition of optimality
give:

† 

F =

Fmax for F < 0
Fmin for F > 0
Fsens for F = 0

Ï 

Ì 
Ô 

Ó 
Ô 

 
(12)

Along the singular arc Fsens, the switching function F and its time derivatives are zero. This
information is used to compute Fsens: 

† 

˙ F = 0  implies that d(l2sf + l4)/dt =0 , i.e. l1m¢ - l2s¢
+ l3p¢ = 0. This, with (9)-(11), implies that l2, l3 and l4 are constant over a singular interval.
As described in (Bryson & Ho 75, Srinivasan et al. 03), the input along the singular arc can
be computed from 

† 

˙ ̇ F = 0  and using l1 = (l2s¢ - l3p¢)/m¢ as:

† 

Fsens =
smxV

sfV - ms

+
(p ¢ m - ¢ p m) - g(s ¢ m - ¢ s m)( ) ¢ m V 2

( ¢ ¢ p ¢ m - ¢ p ¢ ¢ m ) - g( ¢ ¢ s ¢ m - ¢ s ¢ ¢ m )( )(sfV - ms)             (13)
where g = l2/l3 is a free parameter to be chosen.

It was shown in (Modak et al. 86) that, for a free-time problem where the performance index
does not depend explicitly on the terminal time, H* = H(tf) = 0. This condition determines the
value of g = (pm¢ - p¢m)/(sm¢ - s¢m), which leads to:

† 

Fsens =
smxV

sfV - ms             (14)

In fact, Fsens this corresponds to ds/dt = 0, i.e. keeping the substrate concentration at some
constant value s*. Note that, when H* = H(tf) = 0, l1 is also constant, leading to a constant
adjoint vector throughout the singular interval.

2.3 Final Product Yield vs Instantaneous Product Yield

It is interesting to investigate the meaning of the optimal substrate concentration s*.
Eliminating l2 from 

† 

˙ l 1 = 0  and 

† 

˙ l 2 = 0  gives:

† 

¢ p s - ¢ s p
¢ m s - ¢ s m

=
d(p /s ) /ds
d(m /s ) /ds

= -
l1

l3 (15)

With the performance index and terminal constraints given in (2), l1(tf) and l3(tf) can be
computed from (5) as:
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† 

l1(t f ) = -n1p = -
n1e

mx (t f )                           (16)

† 

l3(t f ) =1 (17)

Assuming that mx(tf) ≠ 0 results in l 1 ≈ 0, because e is a very small value. Thus, (15)
corresponds to choosing a substrate concentration such that d(p/s)/ds = 0, i.e. maximizing
(p/s) at every time instant. Note that (p/s) is the ratio between the rates of product formation
and substrate consumption, i.e. the instantaneous product yield. In other words, this means
that, if l1 = 0, maximizing the yield at the end of the batch, mp(tf) / (ms(0)-ms(tf) + sf(Vf-V0)),
in fact corresponds to maximizing the instantaneous yield (p/s).

Such a situation is highly desirable since it is possible to work with a local rather than a
global objective function. Thus instantaneous optimization automatically corresponds to the
optimal solution for the entire interval. This case is widely discussed in the literature.

Remark 1: Note that the maximum of (p/s) does not correspond to the maximum of p. In
other words, maximizing the instantaneous product yield and the specific production rate are
not equivalent. For example, if p is of Monod type, depending on the parameter values, it can
so happen that p is maximized at s = ∞ while (p/s) is maximized at s = 0! Also, if p is of
Haldane type, the maximum of the instantaneous yield (p/s) does not correspond to the peak
of the Haldane function.

3. Compromise between Instantaneous Product Yield and Avoiding
Biomass Extinction

A practical scenario is illustrated where instantaneous product yield maximization does not
maximize the final product yield. Let sinst be the value of the substrate that maximizes (p/s)
and sext be the extinction limit. In Figure 1, the grey region corresponds to the region where
extinction occurs given infinite time, i.e. s < sext.

3.1 Effect of Biomass Death

The two different cases of interest are:
l sinst ≥ sext: (Curve I) - Here, death does not influence the optimal solution of Problem

(2), which corresponds to maximizing the instantaneous product yield.
l sinst < sext: (Curve II) - A low value of s needs to be used for improving the

instantaneous yield. On the other hand, if such a low s is used, there will be biomass
extinction. So, a compromise between yield maximization and avoiding extinction
naturally arises. The optimal substrate concentration is an intermediate value between
sinst and sext. The exact value depends on the volume of the reactor. The larger the
volume, the closer the optimal solution is to sext.

In the case of no biomass extinction (Curve I) mx(tf) will be non-zero and l1 goes to zero as e
goes to zero (16). Thus, as discussed in Section 2.3, the optimum corresponds to maximizing
p/s , i.e. keeping s at sinst.

In the case of biomass extinction (Curve II), instantaneous yield maximization, which
requires l1 = 0, cannot occur since mx(tf) = 0 and thus l1(tf) = ∞ (16) thereby leading to a
contradiction. So, the optimal solution will correspond to a non-zero, yet small, mx(tf) and thus
a large l1. The exact value of l1 depends on how big the reactor is. In other words, the
optimal solution corresponds to maintaining the active biomass such that its concentration
reaches zero only at the end of the operation. Also note that, even in the case of Curve II, the



6

optimal solution corresponds to a constant substrate concentration. This arises from the fact
that H* = 0, thus (14) holds, leading to ds/dt = 0.

3.2 Maintenance of the Inactive Biomass

So far, the terminologies of dead biomass and inactive biomass have been used
interchangeably. However, in many cases when the biomass becomes inactive, it does not
necessarily cease to consume some substrate for maintenance (i.e. the nomenclature of
inactive is more appropriate). So, maintenance of inactive biomass becomes a burden that
needs to be handled throughout the batch.

Such a situation does not directly fall in the class of problems described by Model (1), since
the evolution of ms should include a term that depends on the inactive biomass. Thus, the
results obtained from Problem (2) are no longer valid. A quick fix is to come up with an
approximation of how much the maintenance would cost in terms of product yield, as
described next:

l Assume that the inactive biomass increases linearly with time.

l If the maintenance is proportional to the inactive biomass, the total amount of
substrate used for maintenance is proportional to the square of the batch time.

Hence, a term proportional to the square of the batch time is added to the cost function.

† 

J =
mp (t f )

ms(0) - ms(t f ) + sf (V (t f ) -V (0))
- Kt f

2

(18)

This penalizes long batches since the maintenance would be inhibitive. The mathematical
contribution of the extra term in the cost function is that H* = K tf ≠ 0. So, the optimal
solution no longer corresponds to a constant substrate concentration, but to a time-varying
one. Yet, (13) can be used to compute the optimal input with an appropriate choice of g. A
larger substrate concentration is used initially to grow the biomass in the first phase in order
to shorten the batch. Then, the substrate concentration s is reduced so as to improve the
instantaneous yield as, by that time, extinction is not crucial any more. Thus, the typical feed
profile will be bell-shaped.

Figure 1. Interplay between avoiding extinction and instantaneous yield maximization.
(l) is the instantaneous yield optimum, i.e. sinst, (x) is the optimum solution.

s

p/s

sext

II

I
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4. Optimization of the Filamentous Fungi Fermentation

In this section, the morphologically structured model of the filamentous fungi fermentation
process (a-amylaze production from glucose monohydrate by Aspergillus oryzae in fed-batch
operation) adapted from (Agger et al. 98) is presented. Then, the results of numerical
optimization will be analyzed in the light of the discussion in Section 3.

4.1 Reaction system

The basic characteristic of filamentous organisms is that the fungal hyphae can be split into
three different regions: an extension zone representing the tips of the hyphae, an active region
responsible for the growth and product formation, and an inactive hyphal region. During the
evolution of the system, the active zone can transform into extension zone (branching) and it
can also become inactive (death).

Accordingly, the morphologically structured model contains three types of biomass: Xe -
extension zone, Xa - active zone and Xh - inactive zone. The reaction scheme representing the
functions of the different biomass fractions and the transformation reactions can be illustrated
as follows:

† 

S X aæ Æ æ Xe

† 

S X eæ Æ æ Xa æ Æ æ Xh
(19)

† 

S X aæ Æ æ P

where S stands for the substrate (glucose) and P for the product (a-amylaze).

4.2 Model Equations
4.2.1 Differential equations
Component and total mass balances give the following model (the various variables
and symbols are defined in the notation section at the end of the paper):

† 

dxe

dt
= qb -

F
V

xe                           (20)

† 

dxa

dt
= qa - qb - qd -

F
V

xa (21)

† 

dxh

dt
= qd -

F
V

xh (22)

† 

ds
dt

= -
1
a

qa +
1

YSP

rpsxa + ns(xe + xa + xh )
È 

Î 
Í 

˘ 

˚ 
˙ +

F
V

(sf - s) (23)

† 

dp
dt

= rps xa -
F
V

p (24)

† 

dV
dt

= F (25)

4.2.2 Algebraic equations
The kinetic expressions read:

† 

rps =
kp1

s

s + Ks4( ) 1+ ekp 2 s-srep( )( )
+ kc

s
s + Kcor (26)

† 

qb =
k1s

a(s + Ks1)
xa              (27)
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† 

qa =
k3s

s + Ks3

axe              (28)

† 

qd = k2xa
             (29)

† 

k1 =
kbran ⋅104

p
4

(d ⋅10-4 )2(1- w) fr              (30)

† 

a =
1
2

1
2

d ⋅10-4Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

3 4p
3

1- w( )r
Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ 

-1

             (31)

† 

k3 = kt ip ,max ⋅10-4 p
4

d ⋅10-4( )
2
(1- w) fr              (32)

† 

d =11.25m +1.1              (33)

† 

m =
qa

xe + xa + xh
             (34)

It can be observed that equations (31)-(34) form an algebraic loop: d depends on m (33), m
through qa (34) and (28) depends on a and k3, and a and k3 (31) and (32) depends on d. This
was resolved analytically giving rise to:

† 

d =

1.1+ 1.21+
135ktip ,max fsxe

s + Ks3( ) xe + xa + xh( )
2

             (35)

As a result, (33) and (34) are replaced by (35).

The parameter values and initial conditions are given in Tables 1 and 2, respectively.

Parameter Value Measurement unit
a 0.57
F 80 %
K2 0.08 h-1

kbran 0.0017 tip/(mm h)
kc 8 FAU/(g active DW h)
kp1 32 FAU/(g active DW h)
kp2 5000 L/g
Kcor 10-6 g/L
Ks1 0.003 g/L
Ks3 0.006 g/L
Ks4 0.0006 g/L
ktip,max 49 g active DW/(tip h)
ns 0.01 g glucose/(g DW h)
r 1 g/cm3

sf 550 g/L
srep 0.0095 g/L
w 0.67 g/g DW
Ysp 5316 FAU/g

Table 1. Parameter values
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Table 2. Initial conditions

4.3. Numerical Optimization

The optimization of the filamentous fungi fermentation is considered according to the
formulation in Problem (2). The optimal trajectories computed numerically using MATLAB
are presented in Figure 2. The input parameterization uses five piecewise linear elements. It
can be observed that the optimal control sequence contains three arcs (indicated in the feed
flow rate curve of Figure 2):

1) Initially, there is a batch phase that corresponds to lowering the substrate
concentration.

2) The second arc corresponds to growing the active biomass in order to reduce the
batch time and the amount of substrate spent on the maintenance of the inactive
biomass.

3) The third phase corresponds to reducing the substrate concentration so as to
maximize the instantaneous yield.

This example falls in the scenario studied in Section 3, where instantaneous yield
maximization corresponds to extinction. The main part of the solution, i.e. the second and the
third phase, corresponds to one singular arc that gives a bell-shaped input profile. In the final
phase, extinction is acceptable since the batch is completed before xa reaches zero.

Figure 2. Optimal trajectories obtained via numerical optimization

Additionally, in principle, there is a very short batch phase at the end, where F = 0 waiting
for dmp/dt = e to be reached. Since the influence of this arc on the cost function is negligible

State
variable

Initial
 Value

Measurement
 unit

xe(0) 0.001 g/kg
xa(0) 0 g/kg
xh(0) 0 g/kg
s(0) 4 g/L
p(0) 0 FAU/L
V(0) 4 L

zoom

1 2 3
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compared to the coarseness of the parameterization used, it is not possible to determine it
numerically.

It was argued at the end of Section 3 that maintenance of the inactive biomass could be
handled by penalizing the final time as in (18), thereby giving rise to a bell shaped profile.
This is indeed obtained here for the optimization of filamentous fungi fermentation that
include 3 types of biomass.

5. Conclusion

This paper has shown that the death of the biomass plays an important role in the yield
optimization of bioreactors, especially when the instantaneous yield maximization
corresponds to biomass extinction. The analysis is performed on a simplified mathematical
model, whereas the ideas are applied to the more detailed model of the filamentous fungi
fermentation.

If, instead of final product yield maximization, productivity (amount of product produced/
time elapsed) needs to be maximized, it is unclear whether death would play such a
significant role. For such a problem, it is necessary to grow the biomass during the first part
of the batch in order to reduce the batch time. Thus, biomass death may not have much of a
bearing on the structure of the solution. This represents a future research direction.

6. Notations

a       –   number of tips per unit mass (tips/g extension zone DW)
a –   stoichiometric coefficient for the uptake of substrate
d –   hyphal diameter (mm)
f –   fraction of the active region (%)
F –   feed flow rate (L/h)
k1 –   specific branching frequency (tips/(g active DW h))
k2 –   rate constant (h-1)
k3 –   maximal tip extension rate (g active DW/(tip h))
kbran –   specific branching frequency determined by image analysis (tip/(mm h))
kc –   constitutive a-amylase production rate (FAU/(g active DW h))
kp1 –   maximal product formation rate (FAU/(g active DW h))
kp2 –   inhibition constant on glucose for a-amylase production (g/L)
Kcor –   correction constant for the product formation (g/L)
Ks1 –   saturation constant for branching (g/L)
Ks3 –   saturation constant for tip extension (g/L)
Ks4 –   saturation constant for product formation (g/L)
Ktip,max –   maximal tip extension rate determined by image analysis (g active DW/(tip h))
ns –   maintenance coefficient (g glucose/(g DW h))
m –   specific growth rate (h-1)
p –   a-amylase concentration (g/L)
qa –   growth rate of the active region (g/(kg DW h))
qb –   rate of branching (g/(kg DW h))
qd –   rate of hyphal cell formation (g/(kg DW h))
rps –   specific a-amylase formation rate (FAU/(g active DW h))
r –   hyphal density (g/cm3)
s –   substrate concentration (g/L)
sf –   concentration of substrate feed (g/L)
srep –   threshold substrate concentration for inhibition (g/L)
t –   time (h)
V –   volume (L)
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w –   hyphal water content (g/g DW)
xa –   concentration of active region (g/kg DW)
xe –   concentration of extension zone (g/kg DW)
xh –   concentration of hyphal region (g/kg DW)
Ysp –   yield coefficient for a-amylase on substrate (FAU/g)
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