13 research outputs found

    Sonochemical route for mesoporous silica-coated magnetic nanoparticles towards pH-triggered drug delivery system

    Get PDF
    This work reports a pH-triggered release system based on core@shell mesoporous magnetic nanoparticles (MNP@mSiO2) obtained using a simple and rapid ultrasound-assisted method. Performed characterization reveals magnetic cores of Fe2.9Mn0.1O4 (38 ± 6 nm) and specific loss power values adequate for hyperthermia (463 W/g), surrounded by a mesoporous silica shell (10 ± 2 nm) with large surface area (269 m2 g-1) functionalized with hydroxyl groups (-OH). MNP@mSiO2 were loaded with DOX and amino-silane grops, providing pH-triggered DOX release at acidic environments, driving by dipolar intermolecular interactions. The experimental DOX release kinetics at pH 5.5, 6.6 and 7.4 were determined and adjusted to Gompertz dissolution model (Nash–Sutcliffe efficiency coefficient (NSE>0.9)), where the only strongly pH-dependent variable is the percentage of DOX released. The pH-triggered response observed in the system was ~20% of the DOX loaded into the MNP@mSiO2 is released at pH 6.6 or 7.4, whereas up to 80 wt% is released at pH 5.5. Time to 50% of release and dissociation rate of the system remaining constant, suggesting no-pH influence on these parameters. The biological assays highlight negligible hemolytic effect and cytocompatibility of the hybrid material, pointing out the potential use of MNP@mSiO2 as a magnetic driven drug delivery system with pH-triggered drug release kinetics at acidic environments. These results probe the feasibility of sonochemical methods in the elaboration of biocompatible and controlled properties nanomaterials for drug release applications, with the advantage of accurately responses predictions by mathematical model and using minimal processing steps or laboratory equipment. © 2021 The Author

    Surface-induced orientational phase transition in a lyotropic liquid crystal observed by nonlinear optical techniques.

    Get PDF
    Contains fulltext : 59342.pdf (publisher's version ) (Open Access)We have observed a phase transition from a uniaxial to a biaxial nematic phase in a lyotropic liquid crystal as a function of decreasing film thickness. The results, obtained by optical second-harmonic generation experiments in a wedged cell geometry, are supported by additional Z -scan measurements and can be interpreted by wall-induced ordering effects

    Competition between anchoring and reversible photo-induced alignment of a nematic liquid crystal

    No full text
    We investigated the alignment induced on a nematic liquid crystal (LC) by a photo-aligned polymer film with azo-dye side groups. The orientation of the LC molecules can be manipulated in a reversible manner by irradiating the film with polarized light. We analyzed the competition between the orientation induced by the main chain, through rubbing of the film and that induced by the photo-aligned polymer. Anchoring strength for the different processing conditions are reported. The changes in film morphology caused by rubbing or photo-alignment could be captured by atomic force microscopy. The reversibility of the photo-induced alignment and the competition between the two anchoring mechanisms may allow recording and erasing of information in a LC display

    Sonochemical route for mesoporous silica-coated magnetic nanoparticles towards pH-triggered drug delivery system

    No full text
    This work reports a pH-triggered release system based on core@shell mesoporous magnetic nanoparticles (MNP@mSiO2) obtained using a simple and rapid ultrasound-assisted method. Performed characterization reveals magnetic cores of Fe2.9Mn0.1O4 (38 ± 6 nm) and specific loss power values adequate for hyperthermia (463 W/g), surrounded by a mesoporous silica shell (10 ± 2 nm) with large surface area (269 m2 g-1) functionalized with hydroxyl groups (-OH). MNP@mSiO2 were loaded with DOX and amino-silane grops, providing pH-triggered DOX release at acidic environments, driving by dipolar intermolecular interactions. The experimental DOX release kinetics at pH 5.5, 6.6 and 7.4 were determined and adjusted to Gompertz dissolution model (Nash–Sutcliffe efficiency coefficient (NSE>0.9)), where the only strongly pH-dependent variable is the percentage of DOX released. The pH-triggered response observed in the system was ~20% of the DOX loaded into the MNP@mSiO2 is released at pH 6.6 or 7.4, whereas up to 80 wt% is released at pH 5.5. Time to 50% of release and dissociation rate of the system remaining constant, suggesting no-pH influence on these parameters. The biological assays highlight negligible hemolytic effect and cytocompatibility of the hybrid material, pointing out the potential use of MNP@mSiO2 as a magnetic driven drug delivery system with pH-triggered drug release kinetics at acidic environments. These results probe the feasibility of sonochemical methods in the elaboration of biocompatible and controlled properties nanomaterials for drug release applications, with the advantage of accurately responses predictions by mathematical model and using minimal processing steps or laboratory equipment.This work was partially supported by the Spanish Ministerio de Ciencia, Innovación y Universidades (project PID2019-106947RB-C21), FAPESP, Brazil (Grant 2014/50983-3) and CAPES, Brazil (Grant 88881.189090/2018-01). FCG acknowledges the financial support provided by FAPESP (Grant 2019/06634-8).Peer reviewe

    Effect of non-thermal atmospheric plasma on the dentin-surface topography and composition and on the bond strength of a universal adhesive

    No full text
    This study investigated the effect of application of non-thermal atmospheric plasma (NTAP) on the topography and composition of the dentin surface, as well as the microtensile bond strength (μTBS) of a universal adhesive to NTAP-treated dentin. Exposed flat dentin surfaces from human third molars were either treated with NTAP for 10 and 30 s or untreated (control). The dentin-surface topography and chemical composition were characterized by atomic force microscopy (n = 3) and Raman confocal spectroscopy (n = 5), respectively. The μTBS (n = 8) of Scotchbond Universal to dentin was determined after storage for 24 h and 1 yr, either by direct water exposure or under simulated pulpal pressure. In-situ zymography was used to evaluate the influence of NTAP on the dentin-enzymatic activity. Non-thermal atmospheric plasma produced no remarkable topographical or chemical alterations at the dentin surface; only the amount of phosphate decreased following 10 s of treatment with NTAP. After 1 yr of direct water exposure, the μTBS of NTAP-treated specimens did not differ statistically significantly from that of untreated controls, whereas simulated pulpal pressure-aging resulted in a significantly higher μTBS for NTAP-treated dentin. The dentin-enzymatic activity appeared to be treatment-dependent, but the untreated controls showed more intense fluorescence within the hybrid layer. Scotchbond Universal maintained its μTBS strength after 1 yr of direct water exposure and simulated pulpal pressure, although remarkable statistical differences between treatments were observed depending on the aging condition.status: publishe
    corecore