162 research outputs found

    The Impact of Plant-Parasitic Nematodes on Agriculture and Methods of Control

    Get PDF
    Plant-parasitic nematodes are costly burdens of crop production. Ubiquitous in nature, phytoparasitic nematodes are associated with nearly every important agricultural crop and represent a significant constraint on global food security. Root-knot nematodes (Meloidogyne spp.) cyst nematodes (Heterodera and Globodera spp.) and lesion nematodes (Pratylenchus spp.) rank at the top of list of the most economically and scientifically important species due to their intricate relationship with the host plants, wide host range, and the level of damage ensued by infection. Limitations on the use of chemical pesticides have brought increasing interest in studies on alternative methods of nematode control. Among these strategies of nonchemical nematode management is the identification and implementation of host resistance. In addition, nematode genes involved in parasitism represent key targets for the development of control through gene silencing methods such as RNA interference. Recently, transcriptome profiling analyses has been used to distinguish nematode resistant and susceptible genotypes and identify the specific molecular components and pathways triggered during the plant immune response to nematode invasion. This summary highlights the importance of plant-parasitic nematodes in agriculture and the molecular events involved in plant-nematode interactions

    Sweet potato for closed ecological life support systems using the nutrient film technique

    Get PDF
    Sweet potatoes were grown hydroponically using the nutrient film technique (NFT) in support of the Closed Ecological Life Support System (CELSS) program. Experiments in the greenhouse with the TI-155 sweet potato cultivar produced up to 1790 g/plant of fresh storage roots. Studies with both TI-155 and Georgia Jet cultivars resulted in an edible biomass index of approximately 60 percent, with edible biomass linear growth rates of 12.1 to 66.0 g m(exp -2)d(exp -1) in 0.05 to 0.13 sq meters in 105 to 130 days. Additional experimental results are given. All studies indicate good potential for sweet potatoes in CELSS

    Effect of channel size on sweet potato storage root enlargement in the Tuskegee University hydroponic nutrient film system

    Get PDF
    The potential of the sweet potato as a food source for future long term manned space missions is being evaluated for NASA's Controlled Ecological Life Support Systems (CELSS) program. Sweet potatoes have been successfully grown in a specially designed Tuskegee University nutrient film technique (TU NFT) system. This hydroponic system yielded storage roots as high as 1790 g/plant fresh weight. In order to determine the effect of channel size on the yield of sweet potatoes, the width and depth of the growing channels were varied in two separate experiments. Widths were studied using the rectangular TU NFT channels with widths of 15 cm (6 in), 30 cm (12 in) and 45 cm (18 in). Channel depths of 5 cm (2 in), 10 cm (4 in), and 15 cm (6 in) were studied using a standard NASA fan shaped Biomass Production Chamber (BPC) channel. A comparison of preliminary results indicated that, except for storage root number, the growth and yield of sweet potatoes were not affected by channel width. Storage root yield was affected by channel depth although storage root number and foliage growth were not. Both experiments are being repeated

    Effect of biweekly shoot tip harvests on the growth and yield of Georgia Jet sweet potato grown hydroponically

    Get PDF
    Sweet potato shoot tips have been shown to be a nutritious green vegetable. A study was conducted to determine the effect of biweekly shoot tip harvests on the growth and yield of Georgia Jet sweet potato grown in the greenhouse using the nutrient film technique (NFT). The nutrient solution consisted of a modified half Hoagland solution. Biweekly shoot tip harvests, beginning 42 days after planting, provided substantial amounts of vegetable greens and did not affect the fresh and dry foliage weights or the storage root number and fresh and dry storage root weights at final harvest. The rates of anion and cation uptake were not affected by tip harvests

    Effect of Gabapentin in a Neuropathic Pain Model in Mice Overexpressing Human Wild-Type or Human Mutated Torsin A

    Get PDF
    Background: DYT1 dystonia is the most common form of early-onset inherited dystonia, which is caused by mutation of torsin A (TA) belonging to the "ATPases associated with a variety of cellular activities" (AAA + ATPase). Dystonia is often accompanied by pain, and neuropathic pain can be associated to peripherally induced movement disorder and dystonia. However, no evidence exists on the effect of gabapentin in mice subjected to neuropathic pain model overexpressing human normal or mutated TA. Methods: Mice subjected to L5 spinal nerve ligation (SNL) develop mechanical allodynia and upregulation of the alpha 2 delta-1 L-type calcium channel subunit, forming a validated experimental model of neuropathic pain. Under these experimental conditions, TA is expressed in dorsal horn neurons and astrocytes and colocalizes with alpha 2 delta-1. Similar to this subunit, TA is overexpressed in dorsal horn 7 days after SNL. This model has been used to investigate (1) basal mechanical sensitivity; (2) neuropathic pain phases; and (3) the effect of gabapentin, an alpha 2 delta-1 ligand used against neuropathic pain, in non-transgenic (NT) C57BL/6 mice and in mice overexpressing human wild-type (hWT) or mutant (hMT) TA. Results: In comparison to non-transgenic mice, the threshold for mechanical sensitivity in hWT or hMT does not differ (Kruskal-Wallis test = 1.478; p = 0.4777, although, in the latter animals, neuropathic pain recovery phase is delayed. Interestingly, gabapentin (100 mg/Kg) reduces allodynia at its peak (occurring between post-operative day 7 and day 10) but not in the phase of recovery. Conclusions: These data lend support to the investigation on the role of TA in the molecular machinery engaged during neuropathic pain

    Profiling of ubiquitination pathway genes in peripheral cells from patients with frontotemporal dementia due to C9ORF72 and GRN mutations

    Get PDF
    We analysed the expression levels of 84 key genes involved in the regulated degradation of cellular protein by the ubiquitin-proteasome system in peripheral cells from patients with frontotemporal dementia (FTD) due to C9ORF72 and GRN mutations, as compared with sporadic FTD and age-matched controls. A SABiosciences PCR array was used to investigate the transcription profile in a discovery population consisting of six patients each in C9ORF72, GRN, sporadic FTD and age-matched control groups. A generalized down-regulation of gene expression compared with controls was observed in C9ORF72 expansion carriers and sporadic FTD patients. In particular, in both groups, four genes, UBE2I, UBE2Q1, UBE2E1 and UBE2N, were down-regulated at a statistically significant (p < 0.05) level. All of them encode for members of the E2 ubiquitin-conjugating enzyme family. In GRN mutation carriers, no statistically significant deregulation of ubiquitination pathway genes was observed, except for the UBE2Z gene, which displays E2 ubiquitin conjugating enzyme activity, and was found to be statistically significant up-regulated (p = 0.006). These preliminary results suggest that the proteasomal degradation pathway plays a role in the pathogenesis of FTD associated with TDP-43 pathology, although different proteins are altered in carriers of GRN mutations as compared with carriers of the C9ORF72 expansion

    Learning intrinsic excitability in medium spiny neurons

    Full text link
    We present an unsupervised, local activation-dependent learning rule for intrinsic plasticity (IP) which affects the composition of ion channel conductances for single neurons in a use-dependent way. We use a single-compartment conductance-based model for medium spiny striatal neurons in order to show the effects of parametrization of individual ion channels on the neuronal activation function. We show that parameter changes within the physiological ranges are sufficient to create an ensemble of neurons with significantly different activation functions. We emphasize that the effects of intrinsic neuronal variability on spiking behavior require a distributed mode of synaptic input and can be eliminated by strongly correlated input. We show how variability and adaptivity in ion channel conductances can be utilized to store patterns without an additional contribution by synaptic plasticity (SP). The adaptation of the spike response may result in either "positive" or "negative" pattern learning. However, read-out of stored information depends on a distributed pattern of synaptic activity to let intrinsic variability determine spike response. We briefly discuss the implications of this conditional memory on learning and addiction.Comment: 20 pages, 8 figure

    Genome-Wide Identification of Powdery Mildew Resistance in Common Bean (Phaseolus vulgaris L.)

    Get PDF
    Genome-wide association studies (GWAS) have been utilized to detect genetic variations related to several agronomic traits and disease resistance in common bean. However, its application in the powdery mildew (PM) disease to identify candidate genes and their location in the common bean genome has not been fully addressed. Single-nucleotide polymorphism (SNP) genotyping with a BeadChip containing 5398 SNPs was used to detect genetic variations related to PM disease resistance in a panel of 211 genotypes grown under two field conditions for two consecutive years. Significant SNPs identified on chromosomes Pv04 and Pv10 were repeatable, ensuring the phenotypic data’s reliability and the causal relationship. A cluster of resistance genes was revealed on the Pv04 of the common bean genome, coiled-coil-nucleotide-binding site–leucine-rich repeat (CC-NBS-LRR, CNL), and Toll/interleukin-1 receptor-nucleotide-binding site–leucine-rich repeat type (TIR-NBS-LRR, TNL)-like resistance genes were identified. Furthermore, two resistance genes, Phavu_010G1320001g and Phavu_010G136800g, were also identified on Pv10. Further sequence analysis showed that these genes were homologs to the disease-resistance protein (RLM1A-like) and the putative disease-resistance protein (At4g11170.1) in Arabidopsis. Significant SNPs related to two LRR receptor-like kinases (RLK) were only identified on Pv11 in 2018. Many genes encoding the auxin-responsive protein, TIFY10A protein, growth-regulating factor five-like, ubiquitin-like protein, and cell wall RBR3-like protein related to PM disease resistance were identified nearby significant SNPs. These results suggested that the resistance to PM pathogen involves a network of many genes constitutively co-expressed
    • …
    corecore