135 research outputs found

    Special issue "Smart Urban Lighting Systems"

    Get PDF
    The design and operation of multifunctional infrastructures for public lighting as well as their impact on the urban environment and citizens' life is today of great interest. The cost of energy for public lighting is often an issue for the budget of municipalities. Furthermore, researchers' and designers' attention is increasingly focused on aspects of public lighting not directly valuable through economic factors. Starting from the "quality" of the light environment, looking at citizens' visual comfort, the light has to be considered as an instrument to improve the urban context and objects therein (including buildings). Indeed, urban degradation (lack of infrastructures, maintenance, services, etc.) is linked to the poor quality of everyday issues, such as traffic, pollution, noise, lack of information, long times to access focal points, and the lack of safety. Simultaneously, in many areas, the potential related to the valorization of historical heritage is often underexploited. The installation of efficient lighting systems coupled with the implementation of ICT solutions can provide economic, social, and health benefits, energy efficiency, and visual comfort. On the other hand, as for indoor lighting, these systems can be expensive, not easy to maintain, and not as efficient as expected. The aim of this Special Issue was to investigate the problems and advantages of smart urban lighting systems in more detail. This Special Issue included 6 papers of the 10 submitted papers

    Explainable post-occupancy evaluation using a humanoid robot

    Get PDF
    The paper proposes a new methodological approach for evaluating the comfort condition using the concept of explainable post occupancy to make the user aware of the environmental state in which (s)he works. Such an approach was implemented on a humanoid robot with social capabilities that aims to enforce human engagement to follow recommendations. The humanoid robot helps the user to position the sensors correctly to acquire environmental measures corresponding to the temperature, humidity, noise level, and illuminance. The distribution of the last parameter due to its high variability is also retrieved by the simulation software Dialux. Using the post occupancy evaluation method, the robot also proposes a questionnaire to the user for collecting his/her preferences and sensations. In the end, the robot explains to the user the difference between the suggested values by the technical standards and the real measures comparing the results with his/her preferences and perceptions. Finally, it provides a new classification into four clusters: True positive, true negative, false positive, and false negative. This study shows that the user is able to improve her/his condition based on the explanation given by the robot

    Modeling of light pipes for the optimal disposition in buildings

    Get PDF
    A light pipe is an excellent solution to transport and distribute daylight into environments without or with little lighting, guaranteeing comfort inside the rooms. As stated in the literature, the evaluation of the performances of light pipes presents numerous complexities, making the work very difficult for technicians and designers. This study is aimed to present a methodology that is able to identify the potential of light pipes using indices such as daylight autonomy (DA), continuous daylight autonomy (DAc), and useful daylight illuminance (UDI). This paper presents an analysis of daylight obtained by several configurations of simple models of light pipes installed into a 5 7 5 m plant area room. All simulations are carried out in a DAYSIM environment, which allows calculating the annual availability of daylight based on a RADIANCE raytracer backward. Several daylight conditions were analyzed for different light pipe configurations, considering different pipe lengths and a variable number of light pipes. The light pipes are tested also in the horizontal position, for different orientations. The results of all the combinations were compared with the performances of a window with dimensions equal to 1/8 of the internal surface, which was in accordance with the minimum value to be guaranteed by the Italian Regulation (D.M. 5 July 1975 n. 190) for different orientations. The results indicated a difference in daylight distribution, showing a strong correlation between the percentage levels of DA and DAc with the length and number of pipes, during different periods of the year. The simulated model is strongly influenced by the aspect ratio (R = diameter/length). The results show that the illuminance levels decrease drastically, increasing the length

    Walk on the wild side: Temporarily unstable paths and multiplicative sunspots

    Get PDF
    We propose a generalization of the rational expectations framework to allow for temporarily unstable paths. Our approach introduces multiplicative sunspot shocks and it yields drifting parameters and stochastic volatility. Then, we provide an econometric strategy to estimate this generalized model on the data. The methodology allows the data to choose between different possible alternatives: determinacy, indeterminacy, and temporary instability. We apply our methodology to US in?ation dynamics in the 1970s through the lens of a simple New Keynesian model. When temporarily unstable paths are allowed, the data unambiguously select them to explain the stag?ation period in the 1970s

    Comparison between the performances of daylight linked control system at two different latitudes

    Get PDF
    The aim of this work is to compare the performance of a daylight-linked control system installed and tested in two different case studies by means of a set of indices. The two case studies are characterized by different geometry, location and windows orientation. The first one is located at the ENEA premises in Lampedusa (IT, 35° 30' N); the second one is located in Palermo (IT, 38°6' N) on the third floor of the building 9 of the Department of Engineering if the University of Palermo. In both cases, the indices were calculated by using the same daylight-linked control system and the same end-use (office). The results were reported and analysed in order to demonstrate as the performances of the control system can be different from the ideal performance and that they can be different according to the installation. Furthermore, according to the first outcomes, it results that a detailed analysis of the space before the installation of the control system is a necessary practice

    A smart lighting network design for urban rehabilitation and environmental sustainability: A case study of Bagheria

    Get PDF
    The concept of smart cities, smart services, and smart grids has gained wide international attention in the last few years. The case study, Bagheria, Italy, is an urban area where many old buildings from the 18th century exist, hidden by the chaotic growth of the new city.Thus, the present paper addresses a project for lighting a town in Italy that aims to reduce energy consumption by using efficient lamps and control systems, to make the network useful for many purposes by integrating the ICT and to provide a new identity to the older part of the city by using new technologies and design concepts. A brand new multifunctional modular fixture called the StairLight is designed. The results show good energy savings with a commitment to the standard requirements and an improvement in the social and environmental management of the city

    Development of Neural Network Prediction Models for the Energy Producibility of a Parabolic Dish: A Comparison with the Analytical Approach

    Get PDF
    Solar energy is one of the most widely exploited renewable/sustainable resources for electricity generation, with photovoltaic and concentrating solar power technologies at the forefront of research. This study focuses on the development of a neural network prediction model aimed at assessing the energy producibility of dish–Stirling systems, testing the methodology and offering a useful tool to support the design and sizing phases of the system at different installation sites. Employing the open-source platform TensorFlow, two different classes of feedforward neural networks were developed and validated (multilayer perceptron and radial basis function). The absolute novelty of this approach is the use of real data for the training phase and not predictions coming from another analytical/numerical model. Several neural networks were investigated by varying the level of depth, the number of neurons, and the computing resources involved for two different sets of input variables. The best of all the tested neural networks resulted in a coefficient of determination of 0.98 by comparing the predicted electrical output power values with those measured experimentally. The results confirmed the high reliability of the neural models, and the use of only open-source IT tools guarantees maximum transparency and replicability of the models

    Technical‐economic evaluation of the effectiveness of measures applied to the artificial lighting system of a school

    Get PDF
    none5noEnsuring optimum interior lighting is a topic of great importance, as this influences not only the well‐being of users but also the optimal performance of visual tasks. Lighting can be natural, but if not sufficient, it can be compensated with artificial lighting. This study highlights a methodology for designing a new lighting system that takes into account both technical and economic aspects. The method was applied to an existing school located in southern Italy, in which the electricity consumption is related to the current lighting system. The school is chosen as being representative of the construction type and layout of many local schools. In addition, the coexistence of several visual tasks with different design requisites (e.g., illuminance levels) makes the school a very complex environment. The school lighting is modelled in Google SketchUp and imported into Daysim to simulate the yearly and hourly daylight indoor contribution. Dialux Evo has been used to simulate and design artificial lighting. The results show a reduction of energy consumption of 33% with the simple replacement of fluorescent luminaires with LEDs, while the LED lamp dimming and modulation for rows of luminaires leads to a 95% reduction in energy consumption compared with the current state.openBaglivo C.; Bonomolo M.; Congedo P.M.; Beccali M.; Antonaci S.Baglivo, C.; Bonomolo, M.; Congedo, P. M.; Beccali, M.; Antonaci, S
    corecore