146 research outputs found

    Off-target-based design of selective hiv-1 protease inhibitors

    Get PDF
    The approval of the first HIV-1 protease inhibitors (HIV-1 PRIs) marked a fundamental step in the control of AIDS, and this class of agents still represents the mainstay therapy for this illness. Despite the undisputed benefits, the necessary lifelong treatment led to numerous severe side-effects (metabolic syndrome, hepatotoxicity, diabetes, etc.). The HIV-1 PRIs are capable of interacting with “secondary” targets (off-targets) characterized by different biological activities from that of HIV-1 protease. In this scenario, the in-silico techniques undoubtedly contributed to the design of new small molecules with well-fitting selectivity against the main target, analyzing possible undesirable interactions that are already in the early stages of the research process. The present work is focused on a new mixed-hierarchical, ligand-structure-based protocol, which is centered on an on/off-target approach, to identify the new selective inhibitors of HIV-1 PR. The use of the well-established, ligand-based tools available in the DRUDIT web platform, in combination with a conventional, structure-based molecular docking process, permitted to fast screen a large database of active molecules and to select a set of structure with optimal on/off-target profiles. Therefore, the method exposed herein, could represent a reliable help in the research of new selective targeted small molecules, permitting to design new agents without undesirable interactions

    Targeting SARS-CoV-2 Main Protease for Treatment of COVID-19: Covalent Inhibitors Structure-Activity Relationship Insights and Evolution Perspectives

    Get PDF
    The viral main protease is one of the most attractive targets among all key enzymes involved in the SARS-CoV-2 life cycle. Covalent inhibition of the cysteine145 of SARS-CoV-2 MPRO with selective antiviral drugs will arrest the replication process of the virus without affecting human catalytic pathways. In this Perspective, we analyzed the in silico, in vitro, and in vivo data of the most representative examples of covalent SARS-CoV-2 MPRO inhibitors reported in the literature to date. In particular, the studied molecules were classified into eight different categories according to their reactive electrophilic warheads, highlighting the differences between their reversible/irreversible mechanism of inhibition. Furthermore, the analyses of the most recurrent pharmacophoric moieties and stereochemistry of chiral carbons were reported. The analyses of noncovalent and covalent in silico protocols, provided in this Perspective, would be useful for the scientific community to discover new and more efficient covalent SARS-CoV-2 MPRO inhibitors

    Scaffold-Hopping Strategies in Aurone Optimization: A Comprehensive Review of Synthetic Procedures and Biological Activities of Nitrogen and Sulfur Analogues

    Get PDF
    : Aurones, particular polyphenolic compounds belonging to the class of minor flavonoids and overlooked for a long time, have gained significative attention in medicinal chemistry in recent years. Indeed, considering their unique and outstanding biological properties, they stand out as an intriguing reservoir of new potential lead compounds in the drug discovery context. Nevertheless, several physicochemical, pharmacokinetic, and pharmacodynamic (P3) issues hinder their progression in more advanced phases of the drug discovery pipeline, making lead optimization campaigns necessary. In this context, scaffold hopping has proven to be a valuable approach in the optimization of natural products. This review provides a comprehensive and updated picture of the scaffold-hopping approaches directed at the optimization of natural and synthetic aurones. In the literature analysis, a particular focus is given to nitrogen and sulfur analogues. For each class presented, general synthetic procedures are summarized, highlighting the key advantages and potential issues. Furthermore, the biological activities of the most representative scaffold-hopped compounds are presented, emphasizing the improvements achieved and the potential for further optimization compared to the aurone class

    Bioisosteric heterocyclic analogues of natural bioactive flavonoids by scaffold-hopping approaches: State-of-the-art and perspectives in medicinal chemistry

    Get PDF
    : The flavonoid family is a set of well-known bioactive natural molecules, with a wide range of potential therapeutic applications. Despite the promising results obtained in preliminary in vitro/vivo studies, their pharmacokinetic and pharmacodynamic profiles are severely compromised by chemical instability. To address this issue, the scaffold-hopping approach is a promising strategy for the structural optimization of natural leads to discover more potent analogues. In this scenario, this Perspective provides a critical analysis on how the replacement of the chromon-4-one flavonoid core with other bioisosteric nitrogen/sulphur heterocycles might affect the chemical, pharmaceutical and biological properties of the resulting new chemical entities. The investigated derivatives were classified on the basis of their biological activity and potential therapeutic indications. For each session, the target(s), the specific mechanism of action, if available, and the key pharmacophoric moieties were highlighted, as revealed by X-ray crystal structures and in silico structure-based studies. Biological activity data, in vitro/vivo studies, were examined: a particular focus was given on the improvements observed with the new heterocyclic analogues compared to the natural flavonoids. This overview of the scaffold-hopping advantages in flavonoid compounds is of great interest to the medicinal chemistry community to better exploit the vast potential of these natural molecules and to identify new bioactive molecules

    In Silico Design of New Dual Inhibitors of SARS-CoV-2 MPRO through Ligand- and Structure-Based Methods

    Get PDF
    The viral main protease is one of the most attractive targets among all key enzymes involved in the life cycle of SARS-CoV-2. Considering its mechanism of action, both the catalytic and dimerization regions could represent crucial sites for modulating its activity. Dual-binding the SARS-CoV-2 main protease inhibitors could arrest the replication process of the virus by simultaneously preventing dimerization and proteolytic activity. To this aim, in the present work, we identified two series' of small molecules with a significant affinity for SARS-CoV-2 M-PRO, by a hybrid virtual screening protocol, combining ligand- and structure-based approaches with multivariate statistical analysis. The Biotarget Predictor Tool was used to filter a large in-house structural database and select a set of benzo[b]thiophene and benzo[b]furan derivatives. ADME properties were investigated, and induced fit docking studies were performed to confirm the DRUDIT prediction. Principal component analysis and docking protocol at the SARS-CoV-2 M-PRO dimerization site enable the identification of compounds 1b,c,i,l and 2i,l as promising drug molecules, showing favorable dual binding site affinity on SARS-CoV-2 M-PRO

    One pot-like regiospecific access to 1-aryl-1H-pyrazol-3(2H)-one derivatives and evaluation of the anticancer activity

    Get PDF
    A set of variously substituted 1-arylpyrazol-3-one derivatives, including the di-ortho-aryl substituted ones, was synthesized as new potential anticancer compounds. To fulfill this aim, herein a regiospecific synthesis was proposed utilizing a new revisited one pot procedure, starting from commercial anilines and easily accessible 2,5-dimethyl-furan-3-one. In the course of the sequential ordered steps, in some cases, a nitro group displacement by chlorine took place to a minor extent. The in vitro screening against the full panel of ~60 human cancer cell lines (NCI) showed a moderate, but promising selective antiproliferative activity against the UO31 renal tumor cell line, only in compounds with the introduction on the phenyl moiety of a -CF3 or two Cl groups

    Design and Synthesis of Novel Thieno[3,2-c]quinoline Compounds with Antiproliferative Activity on RET-Dependent Medullary Thyroid Cancer Cells

    Get PDF
    RET kinase gain-of-function mutations represent the main cause of the high aggressiveness and invasiveness of medullary thyroid cancer (MTC). The selective inhibition of the RET kinase is a suitable strategy for the treatment of this endocrine neoplasia. Herein, we performed an innovative ligand-based virtual screening protocol using the DRUDITonline web service, focusing on the RET kinase as a biological target. In this process, thieno[3,2-c]quinolines 6a-e and 7a-e were proposed as new potential RET inhibitors. The selected compounds were synthetized by appropriate synthetic strategies, and in vitro evaluation of antiproliferative properties conducted on the particularly aggressive MTC cell line TT(C634R) identified compounds 6a-d as promising anticancer agents, with IC50 values in the micromolar range. Further structure-based computational studies revealed a significant capability of the most active compounds to the complex RET tyrosine kinase domain. The interesting antiproliferative results supported by in silico predictions suggest that these compounds may represent a starting point for the development of a new series of small heterocyclic molecules for the treatment of MTC

    A compact and automated ex vivo vessel culture system for the pulsatile pressure conditioning of human saphenous veins

    Get PDF
    Saphenous vein (SV) graft disease represents an unresolved problem in coronary artery bypass grafting (CABG). After CABG, a progressive remodelling of the SV wall occurs, possibly leading to occlusion of the lumen, a process termed 'intima hyperplasia' (IH). The investigation of cellular and molecular aspects of IH progression is a primary end-point toward the generation of occlusion-free vessels that may be used as 'life-long' grafts. While animal transplantation models have clarified some of the remodelling factors, the pathology of human SV is far from being understood. This is also due to the lack of devices able to reproduce the altered mechanical load encountered by the SV after CABG. This article describes the design of a novel ex vivo vein culture system (EVCS) capable of replicating the altered pressure pattern experienced by SV after CABG, and reports the results of a preliminary biomechanical conditioning experimental campaign on SV segments. The EVCS applied a CAGB-like pressure (80-120\u2009mmHg) or a venous-like perfusion (3\u2009ml/min, 5\u2009mmHg) conditioning to the SVs, keeping the segments viable in a sterile environment during 7\u2009day culture experiments. After CABG-like pressure conditioning, SVs exhibited a decay of the wall thickness, an enlargement of the luminal perimeter, a rearrangement of the muscle fibres and partial denudation of the endothelium. Considering these preliminary results, the EVCS is a suitable system to study the mechanical attributes of SV graft disease, and its use, combined with a well-designed biological protocol, may be of help in elucidating the cellular and molecular mechanisms involved in SV graft disease

    Health and the Political Agency of Women

    Get PDF
    We investigate whether women?s political representation in state legislatures improves public provision of antenatal and childhood health services in the districts from which they are elected, arguing that the costs of poor services in this domain fall disproportionately upon women. Using large representative data samples from India and accounting for potential endogeneity of politician gender and the sample composition of births, we find that a 10 percentage point increase in women?s representation results in a 2.1 percentage point reduction in neonatal mortality, and we elucidate mechanisms. Women?s political representation may be an under-utilised tool for addressing health in developing countries
    corecore