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ABSTRACT: RET kinase gain-of-function mutations represent the main cause of the high aggressiveness and invasiveness of
medullary thyroid cancer (MTC). The selective inhibition of the RET kinase is a suitable strategy for the treatment of this endocrine
neoplasia. Herein, we performed an innovative ligand-based virtual screening protocol using the DRUDITonline web service, focusing
on the RET kinase as a biological target. In this process, thieno[3,2-c]quinolines 6a−e and 7a−e were proposed as new potential
RET inhibitors. The selected compounds were synthetized by appropriate synthetic strategies, and in vitro evaluation of
antiproliferative properties conducted on the particularly aggressive MTC cell line TT(C634R) identified compounds 6a−d as
promising anticancer agents, with IC50 values in the micromolar range. Further structure-based computational studies revealed a
significant capability of the most active compounds to the complex RET tyrosine kinase domain. The interesting antiproliferative
results supported by in silico predictions suggest that these compounds may represent a starting point for the development of a new
series of small heterocyclic molecules for the treatment of MTC.

1. INTRODUCTION
Thyroid cancer is a heterogeneous type of cancer, whose
incidence has increased in recent years. It represents a
benchmark in the development of oncologic therapies for the
treatment of solid tumors, as its progression involves potential
druggable targets. From a histological point of view, thyroid
cancer can be classified in three main subtypes: differentiated
thyroid cancer (DTC), anaplastic thyroid cancer (ATC), and
medullary thyroid cancer (MTC). MTC arises from
parafollicular C cells, involved in the production and release
of calcitonin, and can be either familial [the multiple endocrine
neoplasia syndromes types 2A and 2B (MEN2A and MEN2B),
in 25% of patients] or sporadic (in 75% of patients).1,2

Currently, genetic analyses aimed at directly improving a
patient response to treatment, identifying the RET (rearranged
during transfection) gene point mutations as the major
responsible for the occurrence of MTC.3,4 RET, a key proto-
oncogene on human chromosome 10q11.21, encodes a
tyrosine kinase receptor (RTK) essential for the normal
development of the brain, the peripheral sympathetic and
parasympathetic nervous systems, the regulation of cell

migration, differentiation, and proliferation. Structurally, the
RET receptor consists of 1114 amino acids and three domains:
the extracellular, the hydrophobic transmembrane, and the
intracellular tyrosine kinase domains. The extracellular domain
comprises 636 residues and is subdivided into four cadherin-
like regions (CLD1−4), with approximately 110 residues each,
a cysteine-rich domain (CRD) with 120 residues, and the Ca2+

binding site in the region between CLD2 and CLD3. The
intracellular domain is characterized by a juxta-membrane
domain of 50 residues, two tyrosine kinase domains, and a C-
terminal tail (Figure 1a).5,6 Seven disulfide bonds are located
in the CRD and another one in the linker region between the
CRD and the transmembrane domain. As a result of an
alternative splicing mechanism, three RET protein isoforms
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exist, differing in the amino acid sequence at the C-terminal
tail: the short (RET9), the intermediate (RET43), and the
long isoform (RET51). RET9 and RET51 are ubiquitous, and
RET43 is found only in primates and some lower species.6,7

The process of RET protein kinase activation requires the
formation of a preliminary binary complex between the glial
cell line-derived neurotrophic factor (GDNF) family ligands
and the GDNF family co-receptors (GFRα1−4). Subse-
quently, RET dimerization is induced by binding to the binary
complex, to form a ternary complex, that turned on the kinase
receptor (Figure 1b).8 Dimerization of RET and its activation
cause a conformational change of the receptor, leading to the
trans-autophosphorylation of specific tyrosine residues in the
intracellular tyrosine kinase domain (Tyr900, Tyr905, Tyr1062,
and Tyr1096). Phosphorylated tyrosine residues are important
sites for several adaptor proteins, which play key roles in the
process of intracellular signal transduction through a plethora
of pathways.9,10

To date, 100 mutations have been described in the RET
gene. In particular, cancers associated with RET are usually
gain-of-function mutations in this protein, affecting the
cysteine-rich (Cys634Arg in patients with MEN2A) or tyrosine
kinase domains (Leu790Phe, Tyr791Phe, Ser891Ala, and
Arg844Leu in patients with MTC and MEN2A; Met918Thr in
95% of MEN2B patients). The resulting mutant protein leads
to constitutive receptor dimerization and aberrant signal
transduction.4,11,12 RET point mutations are a major cause of
the familial frequency of MTC, MEN2A, and MEN2B, making
this kinase receptor a distinctive therapeutic target for a
targeted treatment of thyroid cancers.13

Due to the similarity of the RET binding site with other
RTKs, several multikinase inhibitors (MKIs), such as
vandetanib,14 cabozantinib,15 lenvatinib,16 sorafenib,17 and
nintedanib,14 have shown promising RET inhibitory activity,18

although their use is currently limited by the high dose
required.

Figure 1. (a) 2D representation of the three domains of the receptor tyrosine kinase RET; (b) structure of the RET/GFRα1/GDNF complex
based on the PDB code 6Q2N.

Figure 2. X-ray structure of the RET ATP binding site, focusing on the hinge region, the hydrophobic pocket, and the amino acid residues involved
(PDB code: 6NEC).
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With the aim of circumventing the acquired resistance to
MKIs and the toxic effects due to their promiscuous off-target
activities, the selective inhibitors of RET represent therefore a
focus of research. In general, they should meet basic structural
requirements: a hinge binding moiety (usually consisting of a
heterocyclic core) that acts as a hydrogen bond donor or
acceptor to interact with the key residues Ala807 and/or Glu805

in the hinge region and a hydrophobic group that fits into the
hydrophobic pocket of the ATP binding site (Leu730, Val738,
Ala756, Lys758, Glu775, and Asp892). Furthermore, from a
structural point of view, the gatekeeper residue Val804 is
important to control the access of small molecules to a
hydrophobic cavity. Indeed, the Val804Met and Val804Leu
mutations lead to drug resistance (Figure 2).

In 2020, the two RET-selective inhibitors pralsetinib (BLU-
667) and selpercatinib (LOXO-292) were approved by the
FDA for the treatment of RET-driven or thyroid cancer
(Figure 3).19−21 Although they represented a turning point in
the targeted therapy for these malignancies (higher efficacy,
selectivity, more favorable pharmacokinetic properties, and
fewer off-target interactions compared with the aforemen-
tioned MKIs), the development of resistance due to RET point
mutations (e.g., Gly810Arg/Ser/Cys/Val, Leu730Val/Iso, and
Tyr806Cys/Asn) also began to occur early with these
drugs.21−23

For these reasons, in the last decades, many other aromatic
scaffolds have been investigated in the design of new potential
selective RET inhibitors for their capability to deeply penetrate
the hinge region of the kinase.7 Among them, pyrazolopyr-
imidine,24−28 quinazoline,12,29−33 indolinone,34 nicotinoni-
trile,35 pyridone,36 1,2,4-triazole,37 and pyrazolo[1,5-a]-
pyridine26 are worth mentioning, and as examples, derivatives
1−5 with significant inhibitory activity against the RET kinase
(IC50 values of 8 nM, 2 nM, 3.9 nM, 0.3 μM, and 2.3 μM,
respectively) are shown in Figure 3.

2. RESULTS AND DISCUSSION
In view of these considerations and with the goal of
discovering new agents for the treatment of RET-altered
thyroid cancer, in this work, we applied our experience in in
silico virtual screenings38−45 to evaluate a large structural
database. In particular, we performed a virtual screening to
assess the affinity of an in-house structural database (about
10,000 heterocyclic compounds) for the RET kinase as a
focused biological target.

For this purpose, the DRUDIT BIOTARGETfinder protocol,
a ligand-based tool capable of predicting the affinity of input
structures against the target(s) of interest, was used.46 This
tool is based on molecular descriptor calculation and is able to
assign an affinity score (DAS, DRUDIT Affinity Score, in the
range of 0−1) to each input structure against the target(s) of

Figure 3. 2D chemical structures of RET inhibitors 1−5 and the recently FDA-approved selective RET inhibitors pralsetinib and selpercatinib.

Figure 4. Chemical structures of the under-investigated thieno[3,2-c]quinoline compounds of types 6 and 7.
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interest. The DRUDIT molecular descriptor-based template of
RET was built from known RET inhibitors reported in the
literature and implemented in the DRUDITonline web platform
(https://www.drudit.com/).46

The analysis of the in silico results highlights the compounds
of types 6a−e and 7a−e (Figure 4 and Table 1), with a
polycondensed tricyclic thieno[3,2-c]quinoline scaffold, as the
best ranked structures against the RET kinase.

In this regard, several published papers attribute anti-
proliferative biological activity to the quinoline/quinazoline
scaffold, which constitutes the central core even in many RET
inhibitors approved in therapy (vandetanib, cabozantinib, and
lenvatinib).3,14,29,30,47−50

As shown in Table 1, the DAS values in the range of 0.75−
0.89 are comparable to the already approved RET kinase
inhibitors vandetanib and nintedanib (DAS values of 0.85 and
0.95, respectively).

In terms of structural similarity, the thienoquinoline
compounds meet the general requirements presented by the
RET quinoline/quinazoline inhibitors mentioned above. The
tricyclic thienoquinoline ring system could correspond to the

central pharmacophoric aromatic core, with donor and/or
acceptor hydrogen bond groups, and the hydrophobic
aromatic side ring could fit into the hydrophobic pocket of
the RET ATP binding site.

Thus, based on the encouraging in silico results, we decided
to synthetize the selected quinoline compounds, establishing
appropriate synthetic strategies.

The overall synthetic pathway for the preparation of 3-
benzoylamino-thieno[3,2-c]quinoline derivatives 6a−e and
7a−e involves six steps, starting from the commercially
available 4-nitroaniline (8) (Scheme 1). The intermediates
9−11 were obtained following the procedure reported in the
literature.51 The next synthetic step involves the isolation of
the thieno[3,2-c]quinoline core 12, the polycondensed
aromatic thienoquinoline system. The presence of both
cyano and nitro substituents on quinoline nucleus 11 enhanced
the reactivity of the chlorine atom, which readily underwent
nucleophilic displacement by ethyl thioglycolate, in the
presence of triethylamine as the base and dimethyl sulfoxide
(DMSO) as the solvent. The consequent in situ intramolecular
cyclization allowed to the formation of the thienoquinoline
system and therefore the isolation of derivative 12 in
quantitative yields. To introduce the benzoyl moiety, amino
derivative 12 was treated with substituted benzoyl chlorides.
The nucleophilic acyl substitution was carried out under
strictly anhydrous conditions, employing a DMAP/pyridine
mixture as the base and DCM as the solvent. The use of these
reaction media significantly shortened the reaction time,
leading to derivatives 6a−e at room temperature in 12 h.
Finally, reduction of the nitro group on compounds 6a−e was
realized by hydrogenation with 10% Pd/C in ethanol. After
removal of the catalyst, amino derivatives 7a−e were easily
isolated as pure needles in good/excellent yields (48−95%).

The anticancer activity of all the synthetized compounds
6a−e and 7a−e was evaluated, using the MTT assay, against
the particularly aggressive MTC cell line TT(C634R),
harboring a pathogenic mutation in the cysteine-rich domain
of the RET kinase. Among all, nitro compounds 6a−d
exhibited interesting antiproliferative activity. IC50 was
calculated using the GraphPad software after approximately

Table 1. DRUDIT Affinity Score (DAS) Values for the
Thieno[3,2-c]quinoline of Type 6a−e and 7a−e and
Reference Compounds

compound R1 R2 R3 DAS (RET kinase)

6a H H H 0.84
6b H CH3 H 0.84
6c H OCH3 H 0.85
6d H CF3 H 0.78
6e Cl F H 0.75
7a H H H 0.89
7b H CH3 H 0.89
7c H OCH3 H 0.89
7d H CF3 H 0.80
7e Cl F H 0.82
nintedanib 0.95
vandetanib 0.85

Scheme 1. Synthesis of Derivatives 6a−e and 7a−ea

aReagents and conditions: (i) ethyl-2-cyano-3-ethoxyacrylate, toluene, reflux 12 h; (ii) Dowtherm A, N2, reflux, 10 h; (iii) POCl3, reflux, 8 h; (iv)
ethyl thioglycolate, NEt3, dry DMSO, rt 2 h; (v) appropriate benzoyl chloride (4 equiv), pyridine/DMAP (2:2 equiv), dry DCM, rt 12−24 h; (vi)
10% Pd/C, H2, ethanol, rt 24 h.
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one and two doubling times (3 and 6 days) (Figure S1). No
positive drug control was used in the MTT assay due to the
lack of a reference first-line chemotherapeutic drug. In this
regard, as reported in detail in Table 2, all thienoquinoline

derivatives exhibited IC50 under 100 μM. The nitro compound
6b resulted to be the most active, after both one and two
doubling times, with IC50 in the micromolar range.

On the other hand, compound 6e and the whole set of
amino derivatives 7a−e did not affect cancer cell growth
appreciably, even at the highest concentration of 100 μM.

The capacity of anticancer drugs to influence cell cycle
distribution can shed new light into the mechanism of their
activity. Following cytotoxic evaluation, the effects of
compounds 6a−d were evaluated on cell cycle progression
using the IC50 and the IC90 for each compound and an
incubation time of approximately two doubling times (6 days).
Following flow cytometry acquisition data were analyzed using
ModFit software. TT cells treated with the thienoquinoline
compounds showed no significant difference between the
different cycle phases with respect to the untreated control
(Figure 5). TT cells grew very slowly (the reported doubling

time was approximately 83 h), so most of the cells were in the
G1 phase of the cycle and few cells were in the G2/M phase.
The compounds appear not to perturb the cycle phases.

The data represent the mean of three experiments. No
significant difference between the cycle phases was determined
in all drug treatments (Student’s t test).

Apoptosis, a kind of programmed death, can be induced by
common anticancer drug treatment. Fragmented DNA-

containing nuclei could be detected as a hypodiploid large
peak after staining with propidium iodide and measured by
flow cytometry.52 As shown Figure 6, the treatment of TT cells

with different concentrations of the compounds for 6 days
(two doubling times) increases the proportion of the cell in
apoptosis in all concentrations tested but this does not reach
statistical significance (Student’s t test). Only compound 6c at
the IC90 (100 μM) gave a mean of 43.1 ± 6.2% of hypodiploid
nuclei (P < 0.05 Student’s t test).

Compounds 6a−d, with the best antiproliferative activity,
were further evaluated in silico by means of structure-based
techniques. In detail, induced fit molecular docking (IFD)
simulations were performed to gain insight into the possible
binding mode and the pose of the identified anticancer agents
into the RET tyrosine kinase domain.

Docking studies were performed using the X-ray structure of
the RET ATP binding pocket (X-ray diffraction at a resolution
of 1.87 Å; PDB code 6NEC).14 As reference compounds, we
used the MKI nintedanib and the vandetanib, a quinazoline
RET inhibitor with structural similarity to the selected
thienoquinoline compounds.

Table 3 shows the induced fit docking results (docking
scores, prime energy, and IFD scores) of the identified

thieno[3,2-c]quinoline molecules and the references (ninteda-
nib and vandetanib) in complex with the RET tyrosine kinase
domain.

Overall, compounds 6a−d displayed IFD scores comparable
with those of the two RET inhibitors. In addition, compounds

Table 2. Antiproliferative Activity of Compounds 6a−d
against the TT(C634R) MTC Cell Linea

compound 3 days (IC50) 6 days (IC50)

6a 26.8 ± 2.7 24.3 ± 2.7
6b 3.6 ± 0.22 3.01 ± 0.035
6c 19.5 ± 9.1 11.7 ± 4.2
6d 73.2 ± 0.002 44.9 ± 5.2

aIn the table, the antiproliferative activity is reported as IC50 ± SE
(μM).

Figure 5. Cell cycle distribution of the TT cell line treated with
compounds 6a−d (at the IC50 and IC90) as determined by flow
cytometry. The data represent the mean ± SD of three experiments.
The control represents the cells incubated with solvent only
(DMSO).

Figure 6. Apoptosis, as a percentage of hypodiploid nuclei
determined by flow cytometry, of the TT cell line incubated with
compounds 6a−d at different concentrations (at the IC50 and IC90)
for two doubling times. The results are the mean ± SD of three
experiments. The control represents the cells incubated with solvent
only (DMSO).

Table 3. Prime Energy, Docking, and Induced Fit Docking
(IFD) Scores of Derivatives 6a−d and Reference
Compounds Nintedanib and Vandetanib in Complex with
the RET ATP Binding Pocket (PDB Code 6NEC)

compound docking score prime energy IFD score

6a −9.529 −12678.36 −643.45
6b −9.067 −12662.63 −642.20
6c −8.863 −12676.47 −642.69
6d −8.486 −12662.14 −641.59
nintedanib −11.679 −12684.32 −645.89
vandetanib −8.016 −12790.76 −647.55
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6a,b achieved higher docking scores than vandetanib, when the
other parameters were analyzed.

A deep cross-analysis of the docked 3D complexes and of
the key interactions formed by each compound with the
protein binding site was performed (Figure 7a−f), and Table 4
provides an overview of the amino acids, located at a distance
of 3 Å, involved in the binding with compounds 6a−d and the
two reference compounds.

All the selected derivatives formed a total number of
interactions comparable to the already approved RET
inhibitors (in the range of 16−20 vs 21 and 18 interactions
for nintedanib and vandetanib, respectively), especially with key
residues such as Leu730, Gly731 Gly732, Val738, Ala756, Lys758,
Ile788, Val804 (gatekeeper residue), and Gly805 in the N-lobe;
Tyr806, Ala807, Gly810, and Ser811 in the crucial hinge region,
which determines the access to the hydrophobic pocket; and
Arg878, Leu881, Ser891, and Asp892 in the C-lobe.

In addition, the ligand−protein complexes and the 2D
interaction diagram of compound 6b (the most active
compound in the in vitro assays) shown in Figure 7a−f
identify and analyze the 3D orientation and the best pose of
the compound under study into the binding pocket compared
to nintedanib and vandetanib.

As shown, the thieno[3,2-c]quinoline core of 6b plays a key
role in both the insertion into the ATP binding pocket of the
RET kinase and in the formation of the most of the stabilizing
interactions with the key residues reported in Table 4. In
particular, the 8-NO2 group is well accommodated in the outer
space of the hydrophobic pocket and interacts with crucial
residues (Lys758 and Asp892). This trend is confirmed also for
compounds 6a, 6c, and 6d, which assumed a similar pose and
orientation in the pocket and formed a very close pattern of
interactions (3D ligand−protein complexes and ligand
interaction diagrams are reported in Figure S2). On the

Figure 7. 3D view of the best docked pose and 2D ligand interaction diagram of 6b (a, b), nintedanib (c, d), and vandetanib (e, f) in complex with
the RET ATP binding pocket domain.
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other hand, from the comparison with the reference
compounds, it emerged as the more hindered tricyclic
thienoquinoline core could partially impede a deeper insertion
and interaction with the inside hydrophobic pocket, which in
turn is possible for more flexible structures of nintedanib and
vandetanib (e.g., interactions with Glu775 and Leu779).
Furthermore, both the reference compounds possess charged
and polar side chains (protonated cyclic amines) capable of
forming H-bonds on the protein surface and directed toward
the solvent-exposed area, where, instead, the carboxamide
benzoyl moiety of compounds 6a−d is projected. Probably, the
introduction of more polar and hydrophilic portions in this
part of the thienoquinoline molecules could be a starting point
for a process of lead structure optimization aimed at improving
the interactions with both the solvent and the polar protein
surface.

3. CONCLUSIONS
Thyroid cancer represents one of the most aggressive
endocrine malignances responsible for a high mortality rate.
Its extraordinary capability to evade conventional chemo-
therapy is due to the frequently deregulated and uncontrolled
activity of the RET protein, a kinase that promotes cell
proliferation and survival and for which many gain-of-function
point mutations have been identified in MTC cells. In this
light, RET appears to be a crucial target for the development of
new therapeutics that can be used in the treatment of this
tumor.

In this work, the in-house in silico ligand-based BIO-
TARGETfinder tool, implemented in the DRUDITonline plat-
form, was employed to screen a large database of heterocyclic
small molecules against the RET kinase, aiming at identifying
new antiproliferative agents active against MTC cells. This
virtual screening allowed to select compounds 6a−e and 7a−e,
with the little explored thieno[3,2-c]quinoline core, as the most
promising potential RET inhibitors, with predicted activity in
the same range of the approved RET inhibitors vandetanib and
nintedanib.

The identified derivatives were synthetized in optimal yields
by following an appropriate multistep synthetic pathway and
isolated with an appropriate purity for the antiproliferative
biological assays. Indeed, the MTT assay was performed
against the particularly aggressive MTC cell line TT, harboring
the RET point mutation C634R. After treatment with the 10
thienoquinoline derivatives, encouraging IC50 in the micro-
molar range (3−45 μM) were measured for derivatives 6a−d.
Further biological evaluations showed as the identified
compounds did not affect appreciably the cell cycle and the
apoptosis pathways.

In addition, structure-based docking studies were performed
on the X-ray structures of the RET kinase. The comprehensive
analysis of the ligand−protein 3D complexes and of the
interactions between the selected derivatives and the amino
acids of the active site provided interesting insights into the
possible binding mode and pose of the selected compounds,
especially in comparison to known inhibitors.

In conclusion, this study provided an interesting new series
of compounds with encouraging antiproliferative activity
against MTC cells, which can be used as the starting point
for the development of new more effective inhibitors, with
increased solubility and binding capability.T
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