4,776 research outputs found

    Total Chiral Symmetry Breaking during Crystallization: Who needs a "Mother Crystal"?

    Get PDF
    Processes that can produce states of broken chiral symmetry are of particular interest to physics, chemistry and biology. Chiral symmetry breaking during crystallization of sodium chlorate occurs via the production of secondary crystals of the same handedness from a single "mother crystal" that seeds the solution. Here we report that a large and "symmetric" population of D- and L-crystals moves into complete chiral purity disappearing one of the enantiomers. This result shows: (i) a new symmetry breaking process incompatible with the hypothesis of a single "mother crystal"; (ii) that complete symmetry breaking and chiral purity can be achieved from an initial system with both enantiomers. These findings demand a new explanation to the process of total symmetry breaking in crystallization without the intervention of a "mother crystal" and open the debate on this fascinating phenomenon. We present arguments to show that our experimental data can been explained with a new model of "complete chiral purity induced by nonlinear autocatalysis and recycling".Comment: 5 pages, 4 figures, Added reference

    The susceptibility and excitation spectrum of (VO)2_2P2_2O7_7 in ladder and dimer chain models

    Full text link
    We present numerical results for the magnetic susceptibility of a Heisenberg antiferromagnetic spin ladder, as a function of temperature and the spin-spin interaction strengths JJ_\perp and JJ_{||}. These are contrasted with new bulk limit results for the dimer chain. A fit to the experimental susceptibility of the candidate spin-ladder compound vanadyl pyrophosphate, (VO)2_2P2_2O7_7, gives the parameters J=7.82J_\perp = 7.82 meV and J=7.76J_{||} = 7.76 meV. With these values we predict a singlet-triplet energy gap of Egap=3.9E_{gap} = 3.9 meV, and give a numerical estimate of the ladder triplet dispersion relation ω(k)\omega(k). In contrast, a fit to the dimer chain model leads to J1=11.11J_1=11.11 meV and J2=8.02J_2=8.02 meV, which predicts a gap of Egap=4.9E_{gap} = 4.9 meV.Comment: 16 pages, 6 figures available upon request, RevTex 3.0, preprint ORNL-CCIP-94-04 / RAL-94-02

    Complete homochirality induced by the nonlinear autocatalysis and recycling

    Full text link
    A nonlinear autocatalysis of a chiral substance is shown to achieve homochirality in a closed system, if the back-reaction is included. Asymmetry in the concentration of two enantiomers or the enantiometric excess increases due to the nonlinear autocatalysis. Furthermore, when the back-reaction is taken into account, the reactant supplied by the decomposition of the enantiomers is recycled to produce more and more the dominant one, and eventually the homochirality is established.Comment: 4 pages, 2 figure

    From 'River Cottage' to 'Chicken Run': Hugh Fearnley-Whttingstall and the class politics of ethical consumption

    Get PDF
    Lifestyle television provides a key site through which to explore the dilemmas of ethical consumption, as the genre shifts to consider the ethics of different consumption practices and taste cultures. UK television cook Hugh Fearnley-Whittingstall's TV programmes offer fertile ground not only for thinking about television personalities as lifestyle experts and moral entrepreneurs, but also for thinking about how the meanings and uses of their television image are inflected by genre. In this article we explore how the shift from the lifestyled downshifting narrative of the River Cottage series to the 'campaigning culinary documentary' Hugh's Chicken Run exposes issues of celebrity, class and ethics. While both series are concerned with ethical consumption, they work in different ways to reveal a distinction between 'ethical' and 'unethical' consumption practices and positions - positions that are inevitably classed

    Magnetic Properties of (VO)_2P_2O_7 from Frustrated Interchain Coupling

    Full text link
    Neutron-scattering experiments on (VO)_2P_2O_7 reveal both a gapped magnon dispersion and an unexpected, low-lying second mode. The proximity and intensity of these modes suggest a frustrated coupling between the alternating spin chains. We deduce the minimal model containing such a frustration, and show that it gives an excellent account of the magnon dispersion, static susceptibility and electron spin resonance absorption. We consider two-magnon states which bind due to frustration, and demonstrate that these may provide a consistent explanation for the second mode.Comment: RevTeX, 5 pages, 6 figures, compressed from first versio

    Second Low Temperature Phase Transition in Frustrated UNi_4B

    Get PDF
    Hexagonal UNi_4B is magnetically frustrated, yet it orders antiferromagnetically at T_N = 20 K. However, one third of the U-spins remain paramagnetic below this temperature. In order to track these spins to lower temperature, we measured the specific heat C of \unib between 100 mK and 2 K, and in applied fields up to 9 T. For zero field there is a sharp kink in C at TT^\ast\approx 330 mK, which we interpret as an indication of a second phase transition involving paramagnetic U. The rise in γ=C/T\gamma = C/T between 7 K and 330 mK and the absence of a large entropy liberated at TT^\ast may be due to a combination of Kondo screening effects and frustration that strongly modifies the low T transition.Comment: 4 pages, 4 figure

    Magnetic excitations and effects of magnetic fields on the spin-Peierls transition in CuGeO3_3

    Full text link
    We analyze the magnetic excitations of a spin-1/2 antiferromagnetic Heisenberg model with alternating nearest neighbor interactions and uniform second neighbor interactions recently proposed to describe the spin-Peierls transition in CuGeO3_3. We show that there is good agreement between the calculated excitation dispersion relation and the experimental one. We have also shown that this model reproduces satisfactorily the experimental results for the magnetization vs. magnetic field curve and its saturation value. The model proposed also reproduces qualitatively some features of the magnetic phase diagram of this compound and the overall behavior of the magnetic specific heat in the presence of applied magnetic fields.Comment: 12 pages Revtex v2.0 + 4 figures postscripts include

    S=1/2 chains and spin-Peierls transition in TiOCl

    Full text link
    We study TiOCl as an example of an S=1/2 layered Mott insulator. From our analysis of new susceptibility data, combined with LDA and LDA+U band structure calculations, we conclude that orbital ordering produces quasi-one-dimensional spin chains and that TiOCl is a new example of Heisenberg-chains which undergo a spin-Peierls transition. The energy scale is an order of magnitude larger than that of previously known examples. The effects of non-magnetic Sc impurities are explained using a model of broken finite chains.Comment: 5 pages, 5 figures (color); details on crystal growth added; to be published in Phys. Rev.

    Thermodynamic Properties and Elementary Excitations in Quantum Sine-Gordon Spin System KCuGaF6

    Full text link
    Thermodynamic properties and elementary excitations in S=1/2S=1/2 one-dimensional Heisenberg antiferromagnet KCuGaF6_6 were investigated by magnetic susceptibility, specific heat and ESR measurements. Due to the Dzyaloshinsky-Moriya interaction with alternating DD-vectors and/or the staggered gg-tensor, the staggered magnetic field is induced when subjected to external magnetic field. Specific heat in magnetic field clearly shows the formation of excitation gap, which is attributed to the staggered magnetic field. The specific heat data was analyzed on the basis of the quantum sine-Gordon (SG) model. We observed many ESR modes including one soliton and three breather excitations characteristic of the quantum SG model.Comment: 4 pages, 5 figures, to appear in J. Phys. Soc. Jpn., vol. 76, no.

    Spin-Peierls Dimerization of a s=1/2 Heisenberg Antiferromagnet on a Square Lattice

    Full text link
    Dimerization of a spin-half Heisenberg antiferromagnet on a square lattice is investigated for several possible dimerized configurations, some of which are shown to have lower ground state energies than the others. In particular, the lattice deformations resulting in alternate stronger and weaker couplings along both the principal axes of a square lattice are shown to result in a larger gain in magnetic energy. In addition, a `columnar' configuration is shown to have a lower ground state energy and a faster increase in the energy gap parameter than a `staggered' configuration. The inclusion of unexpanded exchange coupling leads to a power law behaviour for the magnetic energy gain and energy gap, which is qualitatively different from that reported earlier. Instead of increasing as δx\delta ^{x}, the two quantities depend on δ\delta as δν/lnδ.\delta ^{\nu}/| \ln \delta | . This is true both in the near critical regime (0δ0.1)(0\leq \delta \leq 0.1) as well as in the far regime (0δ<1)(0\leq \delta <1). It is suggested that the unexpanded exchange coupling is as much a source of the logarithmic dependence as a correction due to the contribution of umklapp processes. Staggered magnetization is shown to follow the same δ\delta -dependence in all the configurations in the small δ\delta -regime, while for 0δ<10\leq \delta <1, it follows the power law δx\delta ^{x}.Comment: 12 pages, 7 Postscript figures, RevTex forma
    corecore