research

The susceptibility and excitation spectrum of (VO)2_2P2_2O7_7 in ladder and dimer chain models

Abstract

We present numerical results for the magnetic susceptibility of a Heisenberg antiferromagnetic spin ladder, as a function of temperature and the spin-spin interaction strengths JJ_\perp and JJ_{||}. These are contrasted with new bulk limit results for the dimer chain. A fit to the experimental susceptibility of the candidate spin-ladder compound vanadyl pyrophosphate, (VO)2_2P2_2O7_7, gives the parameters J=7.82J_\perp = 7.82 meV and J=7.76J_{||} = 7.76 meV. With these values we predict a singlet-triplet energy gap of Egap=3.9E_{gap} = 3.9 meV, and give a numerical estimate of the ladder triplet dispersion relation ω(k)\omega(k). In contrast, a fit to the dimer chain model leads to J1=11.11J_1=11.11 meV and J2=8.02J_2=8.02 meV, which predicts a gap of Egap=4.9E_{gap} = 4.9 meV.Comment: 16 pages, 6 figures available upon request, RevTex 3.0, preprint ORNL-CCIP-94-04 / RAL-94-02

    Similar works

    Full text

    thumbnail-image

    Available Versions