6,079 research outputs found
The Fast Wandering of Slow Birds
I study a single "slow" bird moving with a flock of birds of a different, and
faster (or slower) species. I find that every "species" of flocker has a
characteristic speed , where is the mean speed of the
flock, such that, if the speed of the "slow" bird equals , it
will randomly wander transverse to the mean direction of flock motion far
faster than the other birds will: its mean-squared transverse displacement will
grow in with time like , in contrast to for the
other birds. In , the slow bird's mean squared transverse displacement
grows like , in contrast to for the other birds. If , the mean-squared displacement of the "slow" bird crosses over from
to scaling in , and from to scaling in
, at a time that scales according to .Comment: 10 pages; 5 pages of which did not appear in earlier versions, but
were added in response to referee's suggestion
A tow concept for the space shuttle orbiter approach and landing test
The tow concept provides the means for evaluating the orbiter aerodynamic performance and handling qualities in the same configuration as expected in actual space shuttle flight operation. A Boeing 747-100 aircraft has engine-out capability to tow the orbiter to an altitude that permits a safe orbiter approach and landing. The tow concept also provides a means for conducting a comprehensive ground test program before proceeding into the actual ALT flight operations. The implementation of the tow concept requires only a minor structural modification in the nose section of the orbiter vehicle; requires minor modifications in the 747 cargo bay; and makes use of those orbiter onboard systems installed in the ALT orbiter vehicle. The 747 wake turbulence does not constitute a problem for the orbiter during take-off or climb to altitude. The impact that the tow concept would have on the cost and schedule of the space shuttle program was not evaluated in this study
Crystal Structure and Magnetism of the Linear-Chain Copper Oxides Sr5Pb3-xBixCuO12
The title quasi-1D copper oxides (0=< x =<0.4) were investigated by neutron
diffraction and magnetic susceptibility studies. Polyhedral CuO4 units in the
compounds were found to comprise linear-chains at inter-chain distance of
approximately 10 A. The parent chain compound (x = 0), however, shows less
anisotropic magnetic behavior above 2 K, although it is of substantially
antiferromagnetic (mu_{eff}= 1.85 mu_{B} and Theta_{W} = -46.4 K) spin-chain
system. A magnetic cusp gradually appears at about 100 K in T vs chi with the
Bi substitution. The cusp (x = 0.4) is fairly characterized by and therefore
suggests the spin gap nature at Delta/k_{B} ~ 80 K. The chain compounds hold
electrically insulating in the composition range.Comment: To be published in PR
Aircraft energy efficiency laminar flow control wing design study
An engineering design study was performed in which laminar flow control (LFC) was integrated into the wing of a commercial passenger transport aircraft. A baseline aircraft configuration was selected and the wing geometry was defined. The LFC system, with suction slots, ducting, and suction pumps was integrated with the wing structure. The use of standard aluminum technology and advanced superplastic formed diffusion bonded titanium technology was evaluated. The results of the design study show that the LFC system can be integrated with the wing structure to provide a structurally and aerodynamically efficient wing for a commercial transport aircraft
The susceptibility and excitation spectrum of (VO)PO in ladder and dimer chain models
We present numerical results for the magnetic susceptibility of a Heisenberg
antiferromagnetic spin ladder, as a function of temperature and the spin-spin
interaction strengths and . These are contrasted with new
bulk limit results for the dimer chain. A fit to the experimental
susceptibility of the candidate spin-ladder compound vanadyl pyrophosphate,
(VO)PO, gives the parameters meV and meV. With these values we predict a singlet-triplet energy gap of
meV, and give a numerical estimate of the ladder triplet
dispersion relation . In contrast, a fit to the dimer chain model
leads to meV and meV, which predicts a gap of meV.Comment: 16 pages, 6 figures available upon request, RevTex 3.0, preprint
ORNL-CCIP-94-04 / RAL-94-02
A Reanalysis of the Hydrodynamic Theory of Fluid, Polar-Ordered Flocks
I reanalyze the hydrodynamic theory of fluid, polar ordered flocks. I find
new linear terms in the hydrodynamic equations which slightly modify the
anisotropy, but not the scaling, of the damping of sound modes. I also find
that the nonlinearities allowed {\it in equilibrium} do not stabilize long
ranged order in spatial dimensions ; in accord with the Mermin-Wagner
theorem. Nonequilibrium nonlinearities {\it do} stabilize long ranged order in
, as argued by earlier work. Some of these were missed by earlier work; it
is unclear whether or not they change the scaling exponents in .Comment: 6 pages, no figures. arXiv admin note: text overlap with
arXiv:0909.195
Proportion Regulation in Globally Coupled Nonlinear Systems
As a model of proportion regulation in differentiation process of biological
system, globally coupled activator-inhibitor systems are studied. Formation and
destabilization of one and two cluster state are predicted analytically.
Numerical simulations show that the proportion of units of clusters is chosen
within a finite range and it is selected depend on the initial condition.Comment: 11 pages (revtex format) and 5 figures (PostScript)
Finite-Field Ground State of the S=1 Antiferromagnetic-Ferromagnetic Bond-Alternating Chain
We investigate the finite-field ground state of the S=1
antiferromagnetic-ferromagnetic bond-alternating chain described by the
Hamiltonian
{\calH}=\sum\nolimits_{\ell}\bigl\{\vecS_{2\ell-1}\cdot\vecS_{2\ell}
+J\vecS_{2\ell}\cdot\vecS_{2\ell+1}\bigr\} +D\sum\nolimits_{\ell}
\bigl(S_{\ell}^z)^2 -H\textstyle\sum\nolimits_\ell S_\ell^z, where
\hbox{} and \hbox{}. We find that two kinds of
magnetization plateaux at a half of the saturation magnetization, the
1/2-plateaux, appear in the ground-state magnetization curve; one of them is of
the Haldane type and the other is of the large--type. We determine the
1/2-plateau phase diagram on the versus plane, applying the
twisted-boundary-condition level spectroscopy methods developed by Kitazawa and
Nomura. We also calculate the ground-state magnetization curves and the
magnetization phase diagrams by means of the density-matrix
renormalization-group method
Cross Section and Angular Distributions of the (d, p) and (d, n) Reactions in C12 from 1.8 to 6.1 Mev
The reaction C12(d, p)C13 has been studied from a deuteron bombarding energy of 1.8 to 6.1 Mev. Resonances were found at 2.47, 2.67, 2.99, 3.39, 4.00, 4.6, 4.8, 5.34, and 5.64 Mev. Angular distributions of protons leaving C13 in the ground state show a pronounced Butler peak at 25° over the entire deuteron energy range. The angular distributions can be explained by assuming small amplitudes for compound nucleus formation interfering with large stripping amplitudes. Angular distributions of the lower energy group of protons leaving C13 excited to 3.09 Mev show a pronounced Butler peak at 0° and an even smaller contribution of compound nucleus formation. The reaction C12(d, n)N13 was also studied, and showed similar resonances and angular distributions. An analysis is made of the phase difference between the resonant and nonresonant parts of the cross section for the (d, p) reaction near the resonance at 4.00 Mev
- …