We investigate the finite-field ground state of the S=1
antiferromagnetic-ferromagnetic bond-alternating chain described by the
Hamiltonian
{\calH}=\sum\nolimits_{\ell}\bigl\{\vecS_{2\ell-1}\cdot\vecS_{2\ell}
+J\vecS_{2\ell}\cdot\vecS_{2\ell+1}\bigr\} +D\sum\nolimits_{\ell}
\bigl(S_{\ell}^z)^2 -H\textstyle\sum\nolimits_\ell S_\ell^z, where
\hbox{J≤0} and \hbox{−∞<D<∞}. We find that two kinds of
magnetization plateaux at a half of the saturation magnetization, the
1/2-plateaux, appear in the ground-state magnetization curve; one of them is of
the Haldane type and the other is of the large-D-type. We determine the
1/2-plateau phase diagram on the D versus J plane, applying the
twisted-boundary-condition level spectroscopy methods developed by Kitazawa and
Nomura. We also calculate the ground-state magnetization curves and the
magnetization phase diagrams by means of the density-matrix
renormalization-group method