943 research outputs found

    Star Formation in Transient Molecular Clouds

    Full text link
    We present the results of a numerical simulation in which star formation proceeds from an initially unbound molecular cloud core. The turbulent motions, which dominate the dynamics, dissipate in shocks leaving a quiescent region which becomes gravitationally bound and collapses to form a small multiple system. Meanwhile, the bulk of the cloud escapes due to its initial supersonic velocities. In this simulation, the process naturally results in a star formation efficiency of 50%. The mass involved in star formation depends on the gas fraction that dissipates sufficient kinetic energy in shocks. Thus, clouds with larger turbulent motions will result in lower star formation efficiencies. This implies that globally unbound, and therefore transient giant molecular clouds (GMCs), can account for the low efficiency of star formation observed in our Galaxy without recourse to magnetic fields or feedback processes. Observations of the dynamic stability in molecular regions suggest that GMCs may not be self-gravitating, supporting the ideas presented in this letter.Comment: 5 pages, 3 figures, accepted for MNRAS as a lette

    Clumpy and fractal shocks, and the generation of a velocity dispersion in molecular clouds

    Get PDF
    We present an alternative explanation for the nature of turbulence in molecular clouds. Often associated with classical models of turbulence, we instead interpret the observed gas dynamics as random motions, induced when clumpy gas is subject to a shock. From simulations of shocks, we show that a supersonic velocity dispersion occurs in the shocked gas provided the initial distribution of gas is sufficiently non-uniform. We investigate the velocity size-scale relation σrα\sigma \propto r^{\alpha} for simulations of clumpy and fractal gas, and show that clumpy shocks can produce realistic velocity size-scale relations with mean α0.5\alpha \thicksim 0.5. For a fractal distribution, with a fractal dimension of 2.2 similar to what is observed in the ISM, we find σr0.4\sigma \propto r^{0.4}. The form of the velocity size-scale relation can be understood as due to mass loading, i.e. the post-shock velocity of the gas is determined by the amount of mass encountered as the gas enters the shock. We support this hypothesis with analytical calculations of the velocity dispersion relation for different initial distributions. A prediction of this model is that the line-of sight velocity dispersion should depend on the angle at which the shocked gas is viewed.Comment: 11 pages, 17 figures, accepted for publication in MNRA

    The efficiency of star formation in clustered and distributed regions

    Full text link
    We investigate the formation of both clustered and distributed populations of young stars in a single molecular cloud. We present a numerical simulation of a 10,000 solar mass elongated, turbulent, molecular cloud and the formation of over 2500 stars. The stars form both in stellar clusters and in a distributed mode which is determined by the local gravitational binding of the cloud. A density gradient along the major axis of the cloud produces bound regions that form stellar clusters and unbound regions that form a more distributed population. The initial mass function also depends on the local gravitational binding of the cloud with bound regions forming full IMFs whereas in the unbound, distributed regions the stellar masses cluster around the local Jeans mass and lack both the high-mass and the low-mass stars. The overall efficiency of star formation is ~ 15 % in the cloud when the calculation is terminated, but varies from less than 1 % in the the regions of distributed star formation to ~ 40 % in regions containing large stellar clusters. Considering that large scale surveys are likely to catch clouds at all evolutionary stages, estimates of the (time-averaged) star formation efficiency for the giant molecular cloud reported here is only ~ 4 %. This would lead to the erroneous conclusion of 'slow' star formation when in fact it is occurring on a dynamical timescale.Comment: 9 pages, 8 figures, MNRAS in pres

    The star formation efficiency and its relation to variations in the initial mass function

    Full text link
    We investigate how the dynamical state of a turbulently supported, 1000 solar mass, molecular cloud affects the properties of the cluster it forms, focusing our discussion on the star formation efficiency (SFE) and the initial mass function (IMF). A variety of initial energy states are examined in this paper, ranging from clouds with PE = 0.1 KE to clouds with PE = 10 KE, and for both isothermal and piece-wise polytropic equations of state (similar to that suggested by Larson). It is found that arbitrary star formation efficiencies are possible, with strongly unbound clouds yielding very low star formation efficiencies. We suggest that the low star formation efficiency in the Maddelena cloud may be a consequence of the relatively unbound state of its internal structure. It is also found that competitive accretion results in the observed IMF when the clouds have initial energy states of PE >= KE. We show that under such conditions the shape of the IMF is independent of time in the calculations. This demonstrates that the global accretion process can be terminated at any stage in the cluster's evolution, while still yielding a distribution of stellar masses that is consistent with the observed IMF. As the clouds become progressively more unbound, competitive accretion is less important and the protostellar mass function flattens. These results predict that molecular clouds should be permeated with a distributed population of stars that follow a flatter than Salpeter IMF.Comment: 8 pages, 6 figures, accepted by MNRAS for publictaion. Now available through the 'Online Early' schem

    Ionisation-induced star formation II: External irradiation of a turbulent molecular cloud

    Full text link
    In this paper, we examine numerically the difference between triggered and revealed star formation. We present Smoothed Particle Hydrodynamics (SPH) simulations of the impact on a turbulent 10^4 solar-mass molecular cloud of irradiation by an external source of ionising photons. In particular, using a control model, we investigate the triggering of star formation within the cloud. We find that, although feedback has a dramatic effect on the morphology of our model cloud, its impact on star formation is relatively minor. We show that external irradiation has both positive and negative effects, accelerating the formation of some objects, delaying the formation of others, and inducing the formation of some that would not otherwise have formed. Overall, the calculation in which feedback is included forms nearly twice as many objects over a period of \sim0.5 freefall times (\sim2.4 Myr), resulting in a star--formation efficiency approximately one third higher (\sim4% as opposed to \sim3% at this epoch) as in the control run in which feedback is absent. Unfortunately, there appear to be no observable characteristics which could be used to differentiate objects whose formation was triggered from those which were forming anyway and which were simply revealed by the effects of radiation, although this could be an effect of poor statistics.Comment: 12 pages, 9 figures, accepted by MNRA

    Clump Lifetimes and the Initial Mass Function

    Full text link
    Recent studies of dense clumps/cores in a number of regions of low-mass star formation have shown that the mass distribution of these clumps closely resembles the initial mass function (IMF) of field stars. One possible interpretation of these observations is that we are witnessing the fragmentation of the clouds into the IMF, and the observed clumps are bound pre-stellar cores. In this paper, we highlight a potential difficulty in this interpretation, namely that clumps of varying mass are likely to have systematically varying lifetimes. This timescale problem can effectively destroy the similarity bewteen the clump and stellar mass functions, such that a stellar-like clump mass function (CMF) results in a much steeper stellar IMF. We also discuss some ways in which this problem may be avoided.Comment: 7 pages, 3 figures, accepted to MNRA

    The relation between accretion rates and the initial mass function in hydrodynamical simulations of star formation

    Get PDF
    We analyse a hydrodynamical simulation of star formation. Sink particles in the simulations which represent stars show episodic growth, which is presumably accretion from a core that can be regularly replenished in response to the fluctuating conditions in the local environment. The accretion rates follow m˙m2/3\dot{m} \propto m^{2/3}, as expected from accretion in a gas-dominated potential, but with substantial variations over-laid on this. The growth times follow an exponential distribution which is tapered at long times due to the finite length of the simulation. The initial collapse masses have an approximately lognormal distribution with already an onset of a power-law at large masses. The sink particle mass function can be reproduced with a non-linear stochastic process, with fluctuating accretion rates m2/3\propto m^{2/3}, a distribution of seed masses and a distribution of growth times. All three factors contribute equally to the form of the final sink mass function. We find that the upper power law tail of the IMF is unrelated to Bondi-Hoyle accretion.Comment: 13 pages, 13 figures, MNRAS accepte
    corecore