375 research outputs found

    Matrix deformation of marls in a foreland fold-and-thrust belt: The example of the eastern Jaca basin, southern Pyrenees

    Get PDF
    In this study, we used the Anisotropy of Magnetic Susceptibility (AMS) to investigate the matrix strain record of two calcareous shale formations, the Eocene Larrès and Pamplona Marls, along the eastern Jaca foreland fold-and-thrust belt (Southern Pyrenees). More than 1000 unoriented fragments, collected from 62 sites along 4 sub-parallel sections in the footwall of the regional Oturia thrust and through local Yebra anticline, were measured. The analysis of the degree of anisotropy (P’) and shape parameter (T) allowed to identify four types of magnetic fabrics. Type II fabrics associated with poorly deformed rocks are characterized by a relatively high anisotropy and an oblate shape. In contrast, type III fabrics, associated with strongly fractured rocks are characterized by the lowest anisotropy and a triaxial shape. Type IV and type V fabrics are characterized by increasing anisotropy and shape parameters, and are associated with the development of a weak to a slaty cleavage in rocks. The distribution of the magnetic fabric is roughly similar along the four studied sections. In the footwall of the Oturia thrust, magnetic fabrics evolve from the type V to type II over a 1000 m-long interval. By contrast, the distribution of magnetic fabric is roughly symmetric across the Yebra anticline, evolving from a dominating type II fabric in both limbs to mixed type III-type V fabrics within the 1 km-large hinge zone. The succession of the magnetic fabrics is interpreted as recording various degrees of matrix strain in response to thrusting and folding. The correlation of magnetic fabrics between the four sections highlights some along-strike variations in the extension of fabric domains that are interpreted as reflecting the local influence of 2nd-order factors, such as the syn-tectonic sedimentation. Results are integrated within the tectono-sedimentary framework of the studied area to propose a model of matrix strain related to the tectonic and sedimentary evolution of a foreland fold and thrust belt

    An experimental benchmark for geoacoustic inversion methods

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bonnel, J., Pecknold, S. P., Hines, P. C., & Chapman, N. R. An experimental benchmark for geoacoustic inversion methods. IEEE Journal of Oceanic Engineering, 46(1), (2021): 261-282, https://doi.org/10.1109/JOE.2019.2960879.Over the past 25 years, there has been significant research activity in development and application of methods for inverting acoustical field data to estimate parameters of geoacoustic models of the ocean bottom. Although the performance of various geoacoustic inversion methods has been benchmarked on simulated data, their performance with experimental data remains an open question. This article constitutes the first attempt of an experimental benchmark of geoacoustic inversion methods. To do so, the article focuses on data from experiments carried out at a common site during the Shallow Water 2006 (SW06) experiment. The contribution of the article is twofold. First, the article provides an overview of experimental inversion methods and results obtained with SW06 data. Second, the article proposes and uses quantitative metrics to assess the experimental performance of inversion methods. From a sonar performance point of view, the benchmark shows that no particular geoacoustic inversion method is definitely better than any other of the ones that were tested. All the inversion methods generated adequate sound-speed profiles, but only a few methods estimated attenuation and density. Also, acoustical field prediction performance drastically reduces with range for all geoacoustic models, and this performance loss dominates over intermodel variability. Overall, the benchmark covers the two main objectives of geoacoustic inversion: obtaining geophysical information about the seabed, and/or predicting acoustic propagation in a given area.Funding Agency: U.S. Office of Naval Research; Ocean Acoustics

    Modelling of ambient noise created by a shipping lane to prepare passive inversion: application to Ushant

    Get PDF
    The Ushant thermal front is a seasonal phenomenon which occurs from May to October in a shallow water environment (100m) of the Iroise Sea (off the coast of the north-western France). It corresponds to the boundary separating a well mixed inner shelf water from an open sea stratified water. To determine the dynamic of the front -or more basically the presence of a stratified or homogeneous water column- the possibility to use a shipping lane as a continuous acoustic source is studied. The originality of this work is to use a single receiver. Simulation results of sounds radiated by a shipping lane in a shallow water environment are presented, both for stratified and homogeneous water column. The corresponding pressure fields show a mean level difference in the frequency band 50-300 Hz. This feature will be used in the future as an observable to differentiate both environments, and thus passively detect the Ushant thermal front. One of the issue to get the mean level offset is to record the shipping lane noise without isolated ship interferences. As a consequence, an optimum mooring position to track the thermal front is suggested by the analysis of the vessel traffic from AIS data (Automatic Identification System)

    2772 Magnetospheric Physics: Plasma waves and instabilities; 6984 Radio Science: Waves in plasma

    Get PDF
    [1] Waves with frequencies in the vicinity of the proton cyclotron frequency and its harmonics are commonly observed from the Fast Auroral Snapshot spacecraft when traversing regions of auroral particle acceleration. In areas of upward current, largeamplitude electromagnetic waves with frequencies within 5% of the local proton gyrofrequency p and its harmonics are often observed where upstreaming ion beams exist. These waves have electric field (E 1 ) and magnetic field (B 1 ) amplitudes of up to 1 V m À1 and 2 nT with the ratio E 1 /B 1 as small as c. The waves occur in the low-altitude portion of the primary auroral acceleration potential, where plasma densities are 1 cm À3 . It is shown how these waves grow through inverse Landau resonance with a cold field-aligned electron beam superimposed on an accelerated and magnetically mirrored plasma sheet electron component in the absence of any significant plasma densities at energies below $100 eV. Significantly, the drift velocity of the cold beam (v oeb ) is several times larger than its thermal velocity v eb , and it is this feature that allows the wave to become electromagnetic at cyclotron harmonics while simultaneously giving rise to broadband electrostatic emissions spanning the first few cyclotron harmonics as is observed

    Comparison of OMI ozone and UV irradiance data with ground-based measurements at two French sites

    No full text
    International audienceOzone Monitoring Instrument (OMI), launched in July 2004, is dedicated to the monitoring of the Earth's ozone, air quality and climate. OMI provides among other things the total column of ozone (TOC), the surface ultraviolet (UV) irradiance at several wavelengths, the erythemal dose rate and the erythemal daily dose. The main objective of this work is to validate OMI data with ground-based instruments in order to use OMI products (collection 2) for scientific studies. The Laboratoire d'Optique Atmosphérique (LOA) located in Villeneuve d'Ascq in the north of France performs solar UV measurements using a spectroradiometer and a broadband radiometer. The site of Briançon in the French Southern Alps is also equipped with a spectroradiometer operated by Interaction Rayonnement Solaire Atmosphère (IRSA). The instrument belongs to the Centre Européen Médical et Bioclimatologique de Recherche et d'Enseignement Supérieur. The comparison between the TOC retrieved with ground-based measurements and OMI TOC shows good agreement at both sites for all sky conditions. Comparisons of spectral UV on clear sky conditions are also satisfying whereas results of comparisons of the erythemal daily doses and erythemal dose rates for all sky conditions and for clear sky show that OMI overestimates significantly surface UV doses at both sites

    Zygosity diagnosis in young twins by parental report

    Get PDF
    this paper is twofold. First, the validity of zygosity classification across childhood is examined in a large sample. One might expect the physical dissimilarity between dizygotic twins to become more obvious as they grow up. If so, the accuracy of classification is likely to improve with increasing age of the participants. A few studies have reported on this issue by evaluating the precision of zygosity diagnosis between samples varying in age, 8,19,23 and by test--retest estimatio

    Structural Integration in Language and Music: Evidence for a Shared System.

    Get PDF
    In this study, we investigate whether language and music share cognitive resources for structural processing. We report an experiment that used sung materials and manipulated linguistic complexity (subject-extracted relative clauses, object-extracted relative clauses) and musical complexity (in-key critical note, out-of-key critical note, auditory anomaly on the critical note involving a loudness increase). The auditory-anomaly manipulation was included in order to test whether the difference between in-key and out-of-key conditions might be due to any salient, unexpected acoustic event. The critical dependent measure involved comprehension accuracies to questions about the propositional content of the sentences asked at the end of each trial. The results revealed an interaction between linguistic and musical complexity such that the difference between the subject- and object-extracted relative clause conditions was larger in the out-of-key condition than in the in-key and auditory-anomaly conditions. These results provide evidence for an overlap in structural processing between language and music

    An extended multisensory temporal binding window in autism spectrum disorders

    Get PDF
    Autism spectrum disorders (ASD) form a continuum of neurodevelopmental disorders, characterized by deficits in communication and reciprocal social interaction, as well as by repetitive behaviors and restricted interests. Sensory disturbances are also frequently reported in clinical and autobiographical accounts. However, surprisingly few empirical studies have characterized the fundamental features of sensory and multisensory processing in ASD. The current study is structured to test for potential differences in multisensory temporal function in ASD by making use of a temporally dependent, low-level multisensory illusion. In this illusion, the presentation of a single flash of light accompanied by multiple sounds often results in the illusory perception of multiple flashes. By systematically varying the temporal structure of the audiovisual stimuli, a “temporal window” within which these stimuli are likely to be bound into a single perceptual entity can be defined. The results of this study revealed that children with ASD report the flash-beep illusion over an extended range of stimulus onset asynchronies relative to children with typical development, suggesting that children with ASD have altered multisensory temporal function. These findings provide valuable new insights into our understanding of sensory processing in ASD and may hold promise for the development of more sensitive diagnostic measures and improved remediation strategies
    • …
    corecore