3 research outputs found

    Global Climate and Atmospheric Composition of the Ultra-Hot Jupiter WASP-103b from HST and Spitzer Phase Curve Observations

    Get PDF
    We present thermal phase curve measurements for the hot Jupiter WASP-103b observed with Hubble/WFC3 and Spitzer/IRAC. The phase curves have large amplitudes and negligible hotspot offsets, indicative of poor heat redistribution to the nightside. We fit the phase variation with a range of climate maps and find that a spherical harmonics model generally provides the best fit. The phase-resolved spectra are consistent with blackbodies in the WFC3 bandpass, with brightness temperatures ranging from 1880±401880\pm40 K on the nightside to 2930±402930 \pm 40 K on the dayside. The dayside spectrum has a significantly higher brightness temperature in the Spitzer bands, likely due to CO emission and a thermal inversion. The inversion is not present on the nightside. We retrieved the atmospheric composition and found the composition is moderately metal-enriched ([M/H]=2313+29×\mathrm{[M/H]} = 23^{+29}_{-13}\times solar) and the carbon-to-oxygen ratio is below 0.9 at 3σ3\,\sigma confidence. In contrast to cooler hot Jupiters, we do not detect spectral features from water, which we attribute to partial H2_2O dissociation. We compare the phase curves to 3D general circulation models and find magnetic drag effects are needed to match the data. We also compare the WASP-103b spectra to brown dwarfs and young directly imaged companions and find these objects have significantly larger water features, indicating that surface gravity and irradiation environment play an important role in shaping the spectra of hot Jupiters. These results highlight the 3D structure of exoplanet atmospheres and illustrate the importance of phase curve observations for understanding their complex chemistry and physics.Comment: 25 pages, 17 figures, 7 tables; accepted to A

    VLT/SPHERE Multiwavelength High-contrast Imaging of the HD 115600 Debris Disk: New Constraints on the Dust Geometry and the Presence of Young Giant Planets

    No full text
    International audienceYoung and dynamically active planetary systems can form disks of debris that are easier to image than the planets themselves. The morphology and evolution of these disks can help to infer the properties of the putative planets responsible for generating and shaping the debris structures. We present integral field spectroscopy and dual-band imaging from VLT/SPHERE (1.0-1.7 μm) of the debris disk around the young F2V/F3V star HD 115600. We aim to (1) characterize the geometry and composition of the debris ring, (2) search for thermal emission of young giant planets, and (3) in the absence of detected planets, to refine the inferred properties of plausible planets around HD 115600 to prepare future attempts to detect them. Using a different dust scattering model (ZODIPIC) than in the discovery paper to model the disk geometry, we find a 0 = 46 ± 2 au for the disk’s central radius and offsets Δα, Δδ = -1.0 ± 0.5, 0.5 ± 0.5 au. This offset is smaller than previously found, suggesting that unseen planets of lower masses could be sculpting the disk. Spectroscopy of the disk in Y-J bands with SPHERE shows reddish color, which becomes neutral or slightly blue in H-band seen with GPI, broadly consistent with a mixed bulk disk composition of processed organics and water ice. While our observed field contains numerous background objects at wide separations, no exoplanet has been directly observed to a mass sensitivity limit of 2 - 3(5 - 7) M J between a projected separation of 40 and 200 au for hot (cold)-start models

    Global Climate and Atmospheric Composition of the Ultra-hot Jupiter WASP-103b from HST

    No full text
    corecore