208 research outputs found

    Effect of hypoxia/reoxygenation on the cytokine-induced production of nitric oxide and superoxide anion in cultured osteoarthritic synoviocytes

    Get PDF
    SummaryObjectiveHypoxia/reoxygenation (H/R) is an important feature in the osteoarthritis (OA) physiopathology. Nitric oxide (NO) is a significant proinflammatory mediator in the inflamed synovium. The purpose of this study was to investigate the effects of H/R on inducible NO synthase (iNOS) activity and expression in OA synoviocytes. In addition we studied the relationship between nitrosative stress and NADPH oxidase (NOX) in such conditions.MethodsHuman cultured synoviocytes from OA patients were treated for 24 h with interleukin 1-β (IL-1β), tumour necrosis factor α (TNF-α) or neither; for the last 6 h, they were submitted to either normoxia or three periods of 1-h of hypoxia followed by 1-h of reoxygenation. NO metabolism (iNOS expression, nitrite and peroxynitrite measurements) was investigated. Furthermore, superoxide anion O2− production, NOX subunit expression and nitrosylation were also assessed.ResultsiNOS expression and nitrite (but not peroxynitrite) production were significantly increased under H/R conditions when compared with to normoxia (P < 0.05). H/R conditions decreased O2− production from ∼0.20 to ∼0.12 nmol min−1 mg proteins−1 (P < 0.05), while NOXs' subunit expression and p47-phox phosphorylation were increased. NOXs and p47-phox were dramatically nitrosylated under H/R conditions (P < 0.05 vs normoxia). Using NOS inhibitors under H/R conditions, p47-phox nitrosylation was prevented and O2− production was restored at normoxic levels (0.21 nmol min−1 mg of proteins−1).ConclusionsOur results provide evidence for an up-regulation of iNOS activity in OA synoviocytes under H/R conditions, associated to a down-regulation of NOX activity through nitrosylation. These findings highlight the importance of radical production to OA pathogenesis, and appraise the metabolic modifications of synovial cells under hypoxia

    Hemodynamic and antifibrotic effects of a selective liver nitric oxide donor V-PYRRO/NO in bile duct ligated rats.

    Get PDF
    AIM: To assess whether a liver specific nitric oxide (NO) donor (V-PYRRO/NO) would prevent the development of portal hypertension and liver fibrosis in rats with bile duct ligation (BDL). METHODS: Treatment (placebo or V-PYRRO/NO 0.53 micromol/kg per hour) was administered i.v. to rats 2 d before BDL (D-2) and maintained until the day of hemodynamic measurement (D26). Intra-hepatic NO level was estimated by measuring liver cGMP level. Effects of V-PYRRO/NO on liver fibrosis and lipid peroxidation were also assessed. RESULTS: Compared to placebo treatment, V-PYRRO/NO improved splanchnic hemodynamics in BDL rats: portal pressure was significantly reduced by 27% (P&lt;0.0001) and collateral circulation development was almost completely blocked (splenorenal shunt blood flow by 74%, P=0.007). Moreover, V-PYRRO/NO significantly prevented liver fibrosis development in BDL rats (by 30% in hepatic hydroxyproline content and 31% in the area of fibrosis, P&lt;0.0001 respectively), this effect being probably due to a decrease in lipid peroxidation by 44% in the hepatic malondialdehyde level (P=0.007). Interestingly, we observed a significant and expected increase in liver cGMP, without any systemic hemodynamic effects (mean arterial pressure, vascular systemic resistance and cardiac output) in both sham-operated and BDL rats treated with V-PYRRO/NO. This result is in accordance with studies on V-PYRRO/NO metabolism showing a specific release of NO in the liver. CONCLUSION: Continuous administrations of V-PYRRO/NO in BDL rats improved liver fibrosis and splanchnic hemodynamics without any noxious systemic hemo-dynamic effects

    Burden of liver disease progression in hospitalized patients with type 2 diabetes mellitus

    Get PDF
    BACKGROUND AND AIMS: There are uncertainties on the burden of liver disease in patients with type-2 diabetes (T2D). METHODS: We measured adjusted hazard ratios of liver disease progression to hepatocellular cancer and/or decompensated cirrhosis in a 2010-2020 retrospective, bicentric, longitudinal, cohort of 52,066 hospitalized patients with T2D. RESULTS: Mean age was 64±14 years and 58% were men. Alcohol use disorders accounted for 57% of liver-related complications and were associated with all liver-related risk factors. Non-metabolic liver-related risk factors accounted for 37% of the liver burden. T2D control was not associated with liver disease progression. The incidence (95% confidence interval) of liver-related complications and of competing mortality were 3.9 (3.5-4.3) and 27.8 (26.7-28.9) per 1000 person-years at risk, respectively. The cumulative incidence of liver disease progression exceeded the cumulative incidence of competing mortality only in the presence of a well-identified risk factors of liver disease progression, including alcohol use. The incidence of hepatocellular cancer was 0.3 (95% CI, 0.1-0.5) per 1000 person-year in patients with obesity and it increased with age. The adjusted hazard ratios of liver disease progression were 55.7 (40.5-76.6), 3.5 (2.3-5.2), 8.9 (6.9-11.5), and 1.5 (1.1-2.1), for alcoholic liver disease, alcohol use disorders without alcoholic liver disease, non-metabolic liver-related risk factors, and obesity, respectively. The attributable fractions of alcohol use disorders, non-metabolic liver risk-related risk factors, and obesity to the liver burden were 55%, 14%, and 7%, respectively. CONCLUSIONS: In this analysis of data from two hospital-based cohorts of patients with T2D, alcohol use disorders, rather than obesity, contributed to most of the liver burden. These results suggest that patients with T2D should be advised to drink minimal amounts of alcohol. LAY SUMMARY: • There is uncertainty on the burden of liver-related complications in patients with type-2 diabetes • We studied the risks of liver cancer and complications of liver disease in over 50,000 patients with type-2 diabetes • We found that alcohol was the main factor associated with complications of liver disease • This finding has major implications on the alcohol advice given to patients with type-2 diabetes

    Protective role of vitamin B6 (PLP) against DNA damage in Drosophila models of type 2 diabetes

    Get PDF
    Growing evidence shows that improper intake of vitamin B6 increases cancer risk and several studies indicate that diabetic patients have a higher risk of developing tumors. We previously demonstrated that in Drosophila the deficiency of Pyridoxal 5' phosphate (PLP), the active form of vitamin B6, causes chromosome aberrations (CABs), one of cancer prerequisites, and increases hemolymph glucose content. Starting from these data we asked if it was possible to provide a link between the aforementioned studies. Thus, we tested the effect of low PLP levels on DNA integrity in diabetic cells. To this aim we generated two Drosophila models of type 2 diabetes, the first by impairing insulin signaling and the second by rearing flies in high sugar diet. We showed that glucose treatment induced CABs in diabetic individuals but not in controls. More interestingly, PLP deficiency caused high frequencies of CABs in both diabetic models demonstrating that hyperglycemia, combined to reduced PLP level, impairs DNA integrity. PLP-depleted diabetic cells accumulated Advanced Glycation End products (AGEs) that largely contribute to CABs as α-lipoic acid, an AGE inhibitor, rescued not only AGEs but also CABs. These data, extrapolated to humans, indicate that low PLP levels, impacting on DNA integrity, may be considered one of the possible links between diabetes and cancer

    Curcumin-induced inhibition of cellular reactive oxygen species generation: novel therapeutic implications

    Get PDF
    There is evidence for increased levels of circulating reactive oxygen species (ROS) in diabetics, as indirectly inferred by the findings of increased lipid peroxidation and decreased antioxidant status. Direct measurements of intracellular generation of ROS using fluorescent dyes also demonstrate an association of oxidative stress with diabetes. Although phenolic compounds attenuate oxidative stress-related tissue damage, there are concerns over toxicity of synthetic phenolic antioxidants and this has considerably stimulated interest in investigating the role of natural phenolics in medicinal applications. Curcumin (the primary active principle in turmeric, Curcuma longa Linn.) has been claimed to represent a potential antioxidant and antiinflammatory agent with phytonutrient and bioprotective properties. However there are lack of molecular studies to demonstrate its cellular action and potential molecular targets. In this study the antioxidant effect of curcumin as a function of changes in cellular ROS generation was tested. Our results clearly demonstrate that curcumin abolished both phorbol-12 myristate-13 acetate (PMA) and thapsigargin-induced ROS generation in cells from control and diabetic subjects. The pattern of these ROS inhibitory effects as a function of dose-dependency suggests that curcumin mechanistically interferes with protein kinase C (PKC) and calcium regulation. Simultaneous measurements of ROS and Ca2+ influx suggest that a rise in cytosolic Ca2+ may be a trigger for increased ROS generation. We suggest that the antioxidant and antiangeogenic actions of curcumin, as a mechanism of inhibition of Ca2+ entry and PKC activity, should be further exploited to develop suitable and novel drugs for the treatment of diabetic retinopathy and other diabetic complications

    Total and corrected antioxidant capacity in hemodialyzed patients

    Get PDF
    BACKGROUND: Oxidative stress may play a critical role in the vascular disease of end stage renal failure and hemodialysis patients. Studies, analyzing either discrete analytes and antioxidant substances, or the integrated total antioxidant activity of human plasma during hemodialysis, give contradictory results. METHODS: Recently, we have introduced a new automated method for the determination of Total Antioxidant Capacity (TAC) of human plasma. We have serially measured TAC and corrected TAC (cTAC: after subtraction of the interactions due to endogenous uric acid, bilirubin and albumin) in 10 patients before the onset of the dialysis session, 10 min, 30 min, 1 h, 2 h and 3 h into the procedure and after completion of the session. RESULTS: Our results indicate that TAC decreases, reaching minimum levels at 2 h. However, corrected TAC increases with t(1/2 )of about 30 min. We then repeated the measurements in 65 patients undergoing dialysis with different filters (36 patients with ethylene vinyl alcohol copolymer resin filter -Eval-, 23 patients with two polysulfone filters -10 with F6 and 13 with PSN140-, and 6 patients with hemophan filters). Three specimens were collected (0, 30, 240 min). The results of this second group confirm our initial results, while no significant difference was observed using either filter. CONCLUSIONS: Our results are discussed under the point of view of possible mechanisms of modification of endogenous antioxidants, and the interaction of lipid- and water-soluble antioxidants

    The relationships between exogenous and endogenous antioxidants with the lipid profile and oxidative damage in hemodialysis patients

    Get PDF
    Background: We sought to investigate the relationships among the plasma levels of carotenoids, tocopherols, endogenous antioxidants, oxidative damage and lipid profiles and their possible effects on the cardiovascular risk associated with hemodialysis (HD) patients. Methods: The study groups were divided into HD and healthy subjects. Plasma carotenoid, tocopherol and malondialdehyde (MDA) levels, as well as erythrocyte reduced glutathione (GSH), were measured by HPLC. Blood antioxidant enzymes, kidney function biomarkers and the lipid profiles were analyzed by spectrophotometric methods. Results: Plasma lycopene levels and blood glutathione peroxidase (GPx) activity were significantly decreased in HD patients compared with healthy subjects. Total cholesterol, low-density lipoprotein cholesterol (LDL-c), creatinine, urea, MDA, GSH, superoxide dismutase (SOD) and catalase (CAT) were significantly increased in HD (p < 0.05). Lycopene levels were correlated with MDA (r = -0.50; p < 0.01), LDL-c (r = -0.38; p = 0.01) levels, the LDL-c/HDL-c index (r = -0.33; p = 0.03) and GPx activity (r = 0.30; p = 0.03). Regression models showed that lycopene levels were correlated with LDL-c (β estimated = -31.59; p = 0.04), while gender was correlated with the TC/HDL-c index and triglycerides. Age did not present a correlation with the parameters evaluated. GPx activity was negatively correlated with MDA levels and with the LDL-c/HDL-c and CT/HDL-c indexes. Conclusions: Lycopene may represent an additional factor that contributes to reduced lipid peroxidation and atherogenesis in hemodialysis patients
    • …
    corecore