2,524 research outputs found
Structure properties of Th and Fm fission fragments: mean field analysis with the Gogny force
The constrained Hartree-Fock-Bogoliubov method is used with the Gogny
interaction D1S to calculate potential energy surfaces of fissioning nuclei
Th and Fm up to very large deformations. The
constraints employed are the mass quadrupole and octupole moments. In this
subspace of collective coordinates, many scission configurations are identified
ranging from symmetric to highly asymmetric fragmentations. Corresponding
fragment properties at scission are derived yielding fragment deformations,
deformation energies, energy partitioning, neutron binding energies at
scission, neutron multiplicities, charge polarization and total fragment
kinetic energies.Comment: 15 pages, 23 figures, accepted for publication in Phys. Rev. C (2007
Effect of Loss on Multiplexed Single-Photon Sources
An on-demand single-photon source is a key requirement for scaling many
optical quantum technologies. A promising approach to realize an on-demand
single-photon source is to multiplex an array of heralded single-photon sources
using an active optical switching network. However, the performance of
multiplexed sources is degraded by photon loss in the optical components and
the non-unit detection efficiency of the heralding detectors. We provide a
theoretical description of a general multiplexed single-photon source with
lossy components and derive expressions for the output probabilities of
single-photon emission and multi-photon contamination. We apply these
expressions to three specific multiplexing source architectures and consider
their tradeoffs in design and performance. To assess the effect of lossy
components on near- and long-term experimental goals, we simulate the
multiplexed sources when used for many-photon state generation under various
amounts of component loss. We find that with a multiplexed source composed of
switches with ~0.2-0.4 dB loss and high efficiency number-resolving detectors,
a single-photon source capable of efficiently producing 20-40 photon states
with low multi-photon contamination is possible, offering the possibility of
unlocking new classes of experiments and technologies.Comment: Journal versio
GOTCHA Password Hackers!
We introduce GOTCHAs (Generating panOptic Turing Tests to Tell Computers and
Humans Apart) as a way of preventing automated offline dictionary attacks
against user selected passwords. A GOTCHA is a randomized puzzle generation
protocol, which involves interaction between a computer and a human.
Informally, a GOTCHA should satisfy two key properties: (1) The puzzles are
easy for the human to solve. (2) The puzzles are hard for a computer to solve
even if it has the random bits used by the computer to generate the final
puzzle --- unlike a CAPTCHA. Our main theorem demonstrates that GOTCHAs can be
used to mitigate the threat of offline dictionary attacks against passwords by
ensuring that a password cracker must receive constant feedback from a human
being while mounting an attack. Finally, we provide a candidate construction of
GOTCHAs based on Inkblot images. Our construction relies on the usability
assumption that users can recognize the phrases that they originally used to
describe each Inkblot image --- a much weaker usability assumption than
previous password systems based on Inkblots which required users to recall
their phrase exactly. We conduct a user study to evaluate the usability of our
GOTCHA construction. We also generate a GOTCHA challenge where we encourage
artificial intelligence and security researchers to try to crack several
passwords protected with our scheme.Comment: 2013 ACM Workshop on Artificial Intelligence and Security (AISec
Digital nomads: A new form of leisure class?
Digital nomadism refers to a mobile lifestyle in which freelancers, digital entrepreneurs and remote workers combine work with continuous travel. In this chapter, we draw from Veblenâs Theory of the Leisure Class (1899) to explore whether digital nomads can be seen to constitute a new form of leisure class. In particular, this entails problematising digital nomadism through four dimensions, namely differentiation, emulation, visibility and institutionalisation. Drawing from a qualitative analysis of the mainstream promotional discourse underlying digital nomadism, we show the existence of a whole set of economic activities based on selling a dreamed work/lifestyle to others. These commercial propositions, which rely on online storytelling and visibility, constitute efficient means of emulation that contribute to framing images of success. Our âVeblen-inspiredâ analysis, we contend, generates a source of questions not only relevant to the study of digital nomadism, but also to miscellaneous aspects of the new world of work
Revisiting Security Vulnerabilities in Commercial Password Managers
In this work we analyse five popular commercial password managers for security vulnerabilities. Our analysis is twofold. First, we compile a list of previously disclosed vulnerabilities through a comprehensive review of the academic and non-academic sources and test each password manager against all the previously disclosed vulnerabilities. We find a mixed picture of fixed and persisting vulnerabilities. Then we carry out systematic functionality tests on the considered password managers and find four new vulnerabilities. Notably, one of the new vulnerabilities we identified allows a malicious app to impersonate a legitimate app to two out of five widely-used password managers we tested and as a result steal the user's password for the targeted service. We implement a proof-of-concept attack to show the feasibility of this vulnerability in a real-life scenario. Finally, we report and reflect on our experience of responsible disclosure of the newly discovered vulnerabilities to the corresponding password manager vendors
Lattice energy-momentum tensor with Symanzik improved actions
We define the energy-momentum tensor on lattice for the and
for the nonlinear -model Symanzik tree-improved actions, using Ward
identities or an explicit matching procedure. The resulting operators give the
correct one loop scale anomaly, and in the case of the sigma model they can
have applications in Monte Carlo simulations.Comment: Self extracting archive fil
Vacuum Polarization Effects in the Lorentz and PCT Violating Electrodynamics
In this work we report new results concerning the question of dynamical mass
generation in the Lorentz and PCT violating quantum electrodynamics. A one loop
calculation for the vacuum polarization tensor is presented. The electron
propagator, "dressed" by a Lorentz breaking extra term in the fermion
Lagrangian density, is approximated by its first order: this scheme is shown to
break gauge invariance. Then we rather consider a full calculation to second
order in the Lorentz breaking parameter: we recover gauge invariance and use
the Schwinger-Dyson equation to discuss the full photon propagator. This allows
a discussion on a possible photon mass shift as well as measurable, observable
physical consequences, such as the Lamb-shift.Comment: Latex file, 19 pages, no figures, includes PACS number
- âŠ