67 research outputs found
Phenolic composition of hydrophilic extract of manna from sicilian Fraxinus angustifolia vahl and its reducing, antioxidant and anti-inflammatory activity in vitro
Manna, a very singular vegetable product derived from the spontaneous solidification of the sap of some Fraxinus species, has long been known for its mild laxative and emollient properties. In this work, a hydro-alcoholic extract of manna (HME) from Sicilian Fraxinus angustifolia Vahl was investigated using HPLC-DAD to find phenol components and using chemical and biological in vitro assays to determine its reducing, antioxidant and anti-inflammatory capacity. We identified elenolic acid, tyrosol, hydroxytyrosol, catechin, fraxetin, verbascoside, gallic acid, procyanidin-B1, and luteolin 3,7 glucoside, in order of abundance. Measurements of total antioxidant activity by Folin-Ciocalteu reaction and ferric reducing ability (FRAP), as well as of scavenger activity towards ABTSâą+, DPPHâą, and perferryl-myoglobin radicals, showed that the phytocomplex effectively reduced oxidants with different standard potentials. When compared with vitamin E, HME also behaved as an efficient chain-breaking antioxidant against lipoperoxyl radicals from methyl linoleate. In cellular models for oxidative stress, HME counteracted membrane lipid oxidation of human erythrocytes stimulated by tert-butyl hydroperoxide and prevented the generation of reactive oxygen species, as well as the GSH decay in IL-1ÎČâactivated intestinal normal-like cells. Moreover, in this in vitro intestinal bowel disease model, HME reduced the release of the pro-inflammatory cytokines IL-6 and IL-8. These findings may suggest that manna acts as an antioxidant and anti-inflammatory natural product in humans, beyond its well-known effects against constipation
Lipid nanoparticles for brain targeting I. Formulation optimization
The aim of this study was to optimize the formulation of lipid nanoparticles (NPs), intended for brain targeting, with the aid of a computer generated experimental design. The high pressure homogenization technique, selected for this purpose, was suitable to formulate the 3 investigated lipids (i.e., Softisan (R) 142, SOFT; Compritol (R) 888 ATO, COMP; cetyl palmitate, CP) into nanometre-length particles, while the computer generated experimental design helped to individuate the best preparation conditions with a small number of experimental assay. Even though all the 3 optimized formulations were suitable for intravenous infusion, CP NPs showed the smallest particle size and the appropriate thermal behaviour to be used as carriers in brain targeting applications. (C) 2011 Elsevier B.V. All rights reserved
- âŠ