9,661 research outputs found

    On the Photorefractive Gunn Effect

    Full text link
    We present and numerically solve a model of the photorefractive Gunn effect. We find that high field domains can be triggered by phase-locked interference fringes, as it has been recently predicted on the basis of linear stability considerations. Since the Gunn effect is intrinsically nonlinear, we find that such considerations give at best order-of-magnitude estimations of the parameters critical to the photorefractive Gunn effect. The response of the system is much more complex including multiple wave shedding from the injecting contact, wave suppression and chaos with spatial structure.Comment: Revtex, 8 pag., 4 fig. (jpg), submit to Physical Review

    Asymptotics of the trap-dominated Gunn effect in p-type Ge

    Full text link
    We present an asymptotic analysis of the Gunn effect in a drift-diffusion model---including electric-field-dependent generation-recombination processes---for long samples of strongly compensated p-type Ge at low temperature and under dc voltage bias. During each Gunn oscillation, there are different stages corresponding to the generation, motion and annihilation of solitary waves. Each stage may be described by one evolution equation for only one degree of freedom (the current density), except for the generation of each new wave. The wave generation is a faster process that may be described by solving a semiinfinite canonical problem. As a result of our study we have found that (depending on the boundary condition) one or several solitary waves may be shed during each period of the oscillation. Examples of numerical simulations validating our analysis are included.Comment: Revtex, 25 pag., 5 fig., to appear Physica

    Noise enhanced spontaneous chaos in semiconductor superlattices at room temperature

    Full text link
    Physical systems exhibiting fast spontaneous chaotic oscillations are used to generate high-quality true random sequences in random number generators. The concept of using fast practical entropy sources to produce true random sequences is crucial to make storage and transfer of data more secure at very high speeds. While the first high-speed devices were chaotic semiconductor lasers, the discovery of spontaneous chaos in semiconductor superlattices at room temperature provides a valuable nanotechnology alternative. Spontaneous chaos was observed in 1996 experiments at temperatures below liquid nitrogen. Here we show spontaneous chaos at room temperature appears in idealized superlattices for voltage ranges where sharp transitions between different oscillation modes occur. Internal and external noises broaden these voltage ranges and enhance the sensitivity to initial conditions in the superlattice snail-shaped chaotic attractor thereby rendering spontaneous chaos more robust.Comment: 6 pages, 4 figures, revte

    Chaotic motion of space charge wavefronts in semiconductors under time-independent voltage bias

    Full text link
    A standard drift-diffusion model of space charge wave propagation in semiconductors has been studied numerically and analytically under dc voltage bias. For sufficiently long samples, appropriate contact resistivity and applied voltage - such that the sample is biased in a regime of negative differential resistance - we find chaos in the propagation of nonlinear fronts (charge monopoles of alternating sign) of electric field. The chaos is always low-dimensional, but has a complex spatial structure; this behavior can be interpreted using a finite dimensional asymptotic model in which the front (charge monopole) positions and the electrical current are the only dynamical variables.Comment: 12 pages, 8 figure

    Chaos in resonant-tunneling superlattices

    Full text link
    Spatio-temporal chaos is predicted to occur in n-doped semiconductor superlattices with sequential resonant tunneling as their main charge transport mechanism. Under dc voltage bias, undamped time-dependent oscillations of the current (due to the motion and recycling of electric field domain walls) have been observed in recent experiments. Chaos is the result of forcing this natural oscillation by means of an appropriate external microwave signal.Comment: 3 pages, LaTex, RevTex, 3 uuencoded figures (1.2M) are available upon request from [email protected], to appear in Phys.Rev.

    Bifurcation analysis and phase diagram of a spin-string model with buckled states

    Get PDF
    We analyze a one-dimensional spin-string model, in which string oscillators are linearly coupled to their two nearest neighbors and to Ising spins representing internal degrees of freedom. String-spin coupling induces a long-range ferromagnetic interaction among spins that competes with a spin-spin antiferromagnetic coupling. As a consequence, the complex phase diagram of the system exhibits different flat rippled and buckled states, with first or second order transition lines between states. The two-dimensional version of the model has a similar phase diagram, which has been recently used to explain the rippled to buckled transition observed in scanning tunnelling microscopy experiments with suspended graphene sheets. Here we describe in detail the phase diagram of the simpler one-dimensional model and phase stability using bifurcation theory. This gives additional insight into the physical mechanisms underlying the different phases and the behavior observed in experiments.Comment: 15 pages, 7 figure
    • …
    corecore