74 research outputs found

    The non-lysosomal β-glucosidase GBA2 is a non-integral membrane-associated protein at the Endoplasmic Reticulum (ER) and golgi.

    No full text
    GBA1 and GBA2 are both beta-glucosidases, which cleave glucosylceramide (GlcCer) to glucose and ceramide. GlcCer is a main precursor for higher order glycosphingolipids but might also serve as intracellular messenger. Mutations in the lysosomal GBA1 underlie Gaucher disease, the most common lysosomal storage disease in humans. Knocking out the non-lysosomal GBA2 in mice results in accumulation of GlcCer outside the lysosomes in various tissues (e. g. testis and liver) and impairs sperm development and liver regeneration. However, the underlying mechanisms are not well understood. To reveal the physiological function of GBA2 and, thereby, of the non-lysosomal GlcCer pool, it is important to characterize the localization of GBA2 and its activity in different tissues. Thus, we generated GBA2-specific antibodies and developed an assay that discriminates between GBA1 and GBA2 without the use of detergent. We show that GBA2 is not, as previously thought, an integral membrane protein but rather a cytosolic protein that tightly associates with cellular membranes. The interaction with the membrane, in particular with phospholipids, is important for its activity. GBA2 is localized at the ER and Golgi, which puts GBA2 in a key position for a lysosome-independent route of GlcCer-dependent signaling. Furthermore, our results suggest that GBA2 might affect the phenotype of Gaucher disease, because GBA2 activity is reduced in Gba1 knock-out fibroblasts and fibroblasts from a Gaucher patient. Our results provide the basis to understand the mechanism for GBA2 function in vivo and might help to unravel the role of GBA2 during pathogenesis of Gaucher disease

    Differential Regulation by Cyclic Nucleotides of the CNGA4 and CNGB1b Subunits in Olfactory Cyclic Nucleotide-Gated Channels

    No full text
    Olfactory cyclic nucleotide-gated (CNG) ion channels are essential contributors to signal transduction of olfactory sensory neurons. The activity of the channels is controlled by the cyclic nucleotides guanosine 3',5'-monophosphate (cGMP) and adenosine 3',5'-monophosphate (cAMP). The olfactory CNG channels are composed of two CNGA2 subunits, one CNGA4 and one CNGB1b subunit, each containing a cyclic nucleotide-binding domain. Using patch-clamp fluorometry, we measured ligand binding and channel activation simultaneously and showed that cGMP activated olfactory CNG channels not only by binding to the two CNGA2 subunits but also by binding to the CNGA4 subunit. In a channel in which the CNGA2 subunits were compromised for ligand binding, cGMP binding to CNGA4 was sufficient to partly activate the channel. In contrast, in heterotetrameric channels, the CNGB1b subunit did not bind cGMP, but channels with this subunit showed activation by cAMP. Thus, the modulatory subunits participate actively in translating ligand binding to activation of heterotetrameric olfactory CNG channels and enable the channels to differentiate between cyclic nucleotides

    The Ca2+-activated K+ current of human sperm is mediated by Slo3

    Get PDF
    Sperm are equipped with a unique set of ion channels that orchestrate fertilization. In mouse sperm, the principal K(+) current (IKSper) is carried by the Slo3 channel, which sets the membrane potential (Vm) in a strongly pHi-dependent manner. Here, we show that IKSper in human sperm is activated weakly by pHi and more strongly by Ca(2+). Correspondingly, Vm is strongly regulated by Ca(2+) and less so by pHi. We find that inhibitors of Slo3 suppress human IKSper, and we identify the Slo3 protein in the flagellum of human sperm. Moreover, heterologously expressed human Slo3, but not mouse Slo3, is activated by Ca(2+) rather than by alkaline pHi; current-voltage relations of human Slo3 and human IKSper are similar. We conclude that Slo3 represents the principal K(+) channel in human sperm that carries the Ca(2+)-activated IKSper current. We propose that, in human sperm, the progesterone-evoked Ca(2+) influx carried by voltage-gated CatSper channels is limited by Ca(2+)-controlled hyperpolarization via Slo3. DOI: http://dx.doi.org/10.7554/eLife.01438.001
    corecore