2,266 research outputs found
Species and functional diversity of native and human-dominated plant communities
Despite growing attention to how human activities alter plant communities, little is known about the ecosystem consequences of these changes. We explore the relationship between species and functional diversity of herbaceous and shrubby plant communities in forested and deforested habitats in three Neotropical landscapes. We focus on six traits: pollination mechanism, dispersal mechanism, growth form, fruit type, fruit size, and seed size. We ask: (1) What is the relationship between species richness and functional diversity (trait state richness)? (2) Do species/functional diversity relationships differ between forested and deforested habitats? and (3) Are observed species/functional diversity patterns more consistent with ecological filtering or differentiation-based assembly processes? We show that species richness is often a weak surrogate for functional diversity, depending on the trait. Species/functional diversity relationships differ significantly between forested and deforested habitats, but the nature of-differences is trait dependent. Dispersal mechanism and fruit type number increased more rapidly in deforested than forested habitats, but the opposite was true for most other traits. Using a null model, we found evidence of ecological filtering for most traits in both habitats. Results demonstrate that deforested habitats do not necessarily contain lower functional diversity than forest but that the ecological assembly processes influencing community function in deforested communities differ dramatically from forest
Oocyte quality assessment in marine invertebrates: a novel approach by fluorescence spectroscopy
Background: The assessment of oocyte quality is, nowadays, a major challenge in aquaculture, oocyte cryopreservation, and environmental science. Oocyte quality is a determining factor in fertilization and embryo development; however, there is still a lack of rapid and sensitive cellular markers for its assessment. Currently, its estimation is predominantly based on morphological analysis, which is subjective and does not consistently reflect the developmental competence of the oocytes. Despite several recent studies investigating molecular markers related to oocyte quality, methods currently available for their determination pose various technical challenges and limitations. In this study, we developed a novel approach based on fluorescence spectroscopy to assess different intrinsic physiological parameters that can be employed to evaluate egg quality in marine invertebrates that are widely used as animal models such as sea urchins and mussels. Results: Different physiological parameters, such as viability, mitochondrial activity, intracellular ROS levels, plasma membrane lipid peroxidation, and intracellular pH, for egg quality evaluation have been successfully assessed in sea urchins and mussels by using specific fluorescent dyes and detecting the fluorescent signals in eggs through fluorescence spectroscopy. Conclusions: Based on our findings, we propose these physiological markers as useful predictors of egg quality in marine invertebrates; they can be estimated rapidly, selectively, and sensitively by employing this novel approach, which, due to the speed of analysis, the low cost, and easy use can be considered a powerful analytical tool for the egg quality assessment
Ocean Planet or Thick Atmosphere: On the Mass-Radius Relationship for Solid Exoplanets with Massive Atmospheres
The bulk composition of an exoplanet is commonly inferred from its average
density. For small planets, however, the average density is not unique within
the range of compositions. Variations of a number of important planetary
parameters--which are difficult or impossible to constrain from measurements
alone--produce planets with the same average densities but widely varying bulk
compositions. We find that adding a gas envelope equivalent to 0.1%-10% of the
mass of a solid planet causes the radius to increase 5-60% above its gas-free
value. A planet with a given mass and radius might have substantial water ice
content (a so-called ocean planet) or alternatively a large rocky-iron core and
some H and/or He. For example, a wide variety of compositions can explain the
observed radius of GJ 436b, although all models require some H/He. We conclude
that the identification of water worlds based on the mass-radius relationship
alone is impossible unless a significant gas layer can be ruled out by other
means.Comment: 5 pages, 3 figures, accepted to Ap
The sensitivity of a specific denitrification rate under the dissolved oxygen pressure
The biological denitrification process is extensively discussed in scientific literature. The process requires anoxic conditions, but the influence of residual dissolved oxygen (DO) on the efficiency is not yet adequately documented. The present research aims to fill this gap by highlighting the effects of DO on the specific denitrification rate (SDNR) and consequently on the efficiency of the process. SDNR at a temperature of 20◦C (SDNR20◦C) is the parameter normally used for the sizing of the denitrification reactor in biological-activated sludge processes. A sensitivity analysis of SNDR20◦C to DO variations is developed. For this purpose, two of the main empirical models illustrated in the scientific literature are taken into consideration, with the addition of a deterministic third model proposed by the authors and validated by recent experimentations on several full-scale plants. In the first two models, SDNR20◦C is expressed as a function of the only variable food:microrganism ratio in denitrification (F:MDEN), while in the third one, the dependence on DO is made explicit. The sensitivity analysis highlights all the significant dependence of SDNR20◦C on DO characterized by a logarithmic decrease with a very pronounced gradient in correspondence with low DO concentrations. Moreover, the analysis demonstrates the relatively small influence of F:MDEN on the SDNR20◦C and on the correlation between SDNR20◦C and DO. The results confirm the great importance of minimizing DO and limiting, as much as possible, the transport of oxygen in the denitrification reactor through the incoming flows and mainly the mixed liquor recycle. Solutions to achieve this result in full-scale plants are reported
The role of the capping agent and nanocrystal size in photoinduced hydrogen evolution using CdTe/CdS quantum dot sensitizers
Hydrogen production via light-driven water splitting is a key process in the context of solar energy conversion. In this respect, the choice of suitable light-harvesting units appears as a major challenge, particularly as far as stability issues are concerned. In this work, we report on the use of CdTe/CdS QDs as photosensitizers for light-assisted hydrogen evolution in combination with a nickel bis(diphosphine) catalyst (1) and ascorbate as the sacrificial electron donor. QDs of different sizes (1.7-3.4 nm) and with different capping agents (MPA, MAA, and MSA) have been prepared and their performance assessed in the above-mentioned photocatalytic reaction. Detailed photophysical studies have been also accomplished to highlight the charge transfer processes relevant to the photocatalytic reaction. Hydrogen evolution is observed with remarkable efficiencies when compared to common coordination compounds like Ru(bpy)32+ (where bpy = 2,2′-bipyridine) as light-harvesting units. Furthermore, the hydrogen evolution performance under irradiation is strongly determined by the nature of the capping agent and the QD size and can be related to the concentration of the surface defects within the semiconducting nanocrystal. Overall, the present results outline how QDs featuring large quantum yields and long lifetimes are desirable to achieve sustained hydrogen evolution upon irradiation and that a precise control of the structural and photophysical properties thus appears as a major requirement towards profitable photocatalytic applications
Professional attitudes to sex offenders: implications for multiagency and collaborative working
Recent years have seen the development and implementation of a range of multi-disciplinary and partnership approaches to managing risk in known sex offenders, involving collaboration between justice and human services agencies. Potential barriers to the development of effective multidisciplinary practices arise when participating professionals hold different attitudes about those they are responsible for managing. This paper examines differences in attitudes towards sex offenders in two professional groups – police officers and allied health workers. The results suggest that police officers tend to hold more negative views than those who deliver treatment and support services. They are more likely to believe that offenders cannot change their behaviour and should be subject to more punitive sanctions. These findings are discussed in relation to judgements of both risk and dangerousness and associated decisions about the appropriate management of sex offenders in multi-agency and multi-disciplinary working forums
- …