290 research outputs found

    Orbital-selective confinement effect of Ru 4d4d orbitals in SrRuO3_3 ultrathin film

    Get PDF
    The electronic structure of SrRuO3_3 thin film with thickness from 50 to 1 unit cell (u.c.) is investigated via the resonant inelastic x-ray scattering (RIXS) technique at the O K-edge to unravel the intriguing interplay of orbital and charge degrees of freedom. We found that orbital-selective quantum confinement effect (QCE) induces the splitting of Ru 4d4d orbitals. At the same time, we observed a clear suppression of the electron-hole continuum across the metal-to-insulator transition (MIT) occurring at the 4 u.c. sample. From these two clear observations we conclude that QCE gives rise to a Mott insulating phase in ultrathin SrRuO3_3 films. Our interpretation of the RIXS spectra is supported by the configuration interaction calculations of RuO6_6 clusters.Comment: 7 pages, 7 figure

    Emergence of robust 2D skyrmions in SrRuO3 ultrathin film without the capping layer

    Full text link
    Magnetic skyrmions have fast evolved from a novelty, as a realization of topologically protected structure with particle-like character, into a promising platform for new types of magnetic storage. Significant engineering progress was achieved with the synthesis of compounds hosting room-temperature skyrmions in magnetic heterostructures, with the interfacial Dzyaloshinskii-Moriya interactions (DMI) conducive to the skyrmion formation. Here we report findings of ultrathin skyrmion formation in a few layers of SrRuO3 grown on SrTiO3 substrate without the heavy-metal capping layer. Measurement of the topological Hall effect (THE) reveals a robust stability of skyrmions in this platform, judging from the high value of the critical field 1.57 Tesla (T) at low temperature. THE survives as the field is tilted by as much as 85 degrees at 10 Kelvin, with the in-plane magnetic field reaching up to 6.5 T. Coherent Bragg Rod Analysis, or COBRA for short, on the same film proves the rumpling of the Ru-O plane to be the source of inversion symmetry breaking and DMI. First-principles calculations based on the structure obtained from COBRA find significant magnetic anisotropy in the SrRuO3 film to be the main source of skyrmion robustness. These features promise a few-layer SRO to be an important new platform for skyrmionics, without the necessity of introducing the capping layer to boost the spin-orbit coupling strength artificially.Comment: Supplementary Information available upon reques

    Emergence of robust 2D skyrmions in SrRuO3 ultrathin film without the capping layer

    Get PDF
    Magnetic skyrmions have fast evolved from a novelty, as a realization of topologically protected structure with particle-like character, into a promising platform for new types of magnetic storage. Significant engineering progress was achieved with the synthesis of compounds hosting room-temperature skyrmions in magnetic heterostructures, with the interfacial Dzyaloshinskii-Moriya interactions (DMI) conducive to the skyrmion formation. Here we report findings of ultrathin skyrmion formation in a few layers of SrRuO3 grown on SrTiO3 substrate without the heavy-metal capping layer. Measurement of the topological Hall effect (THE) reveals a robust stability of skyrmions in this platform, judging from the high value of the critical field 1.57 Tesla (T) at low temperature. THE survives as the field is tilted by as much as 85 degrees at 10 Kelvin, with the in-plane magnetic field reaching up to 6.5 T. Coherent Bragg Rod Analysis, or COBRA for short, on the same film proves the rumpling of the Ru-O plane to be the source of inversion symmetry breaking and DMI. First-principles calculations based on the structure obtained from COBRA find significant magnetic anisotropy in the SrRuO3 film to be the main source of skyrmion robustness. These features promise a few-layer SRO to be an important new platform for skyrmionics, without the necessity of introducing the capping layer to boost the spin-orbit coupling strength artificially.Comment: Supplementary Information available upon reques

    Defect-control of conventional and anomalous electron transport at complex oxide interfaces

    Get PDF
    Using low-temperature electrical measurements, the interrelation between electron transport, magnetic properties, and ionic defect structure in complex oxide interface systems is investigated, focusing on NdGaO3/SrTiO3 (100) interfaces. Field-dependent Hall characteristics (2–300 K) are obtained for samples grown at various growth pressures. In addition to multiple electron transport, interfacial magnetism is tracked exploiting the anomalous Hall effect (AHE). These two properties both contribute to a nonlinearity in the field dependence of the Hall resistance, with multiple carrier conduction evident below 30 K and AHE at temperatures ≲10  K. Considering these two sources of nonlinearity, we suggest a phenomenological model capturing the complex field dependence of the Hall characteristics in the low-temperature regime. Our model allows the extraction of the conventional transport parameters and a qualitative analysis of the magnetization. The electron mobility is found to decrease systematically with increasing growth pressure. This suggests dominant electron scattering by acceptor-type strontium vacancies incorporated during growth. The AHE scales with growth pressure. The most pronounced AHE is found at increased growth pressure and, thus, in the most defective, low-mobility samples, indicating a correlation between transport, magnetism, and cation defect concentratio

    2\sqrt{2}×\times2R45\sqrt{2}R45^\circ surface reconstruction and electronic structure of BaSnO3_3 film

    Full text link
    We studied surface and electronic structures of barium stannate (BaSnO3_3) thin-film by low energy electron diffraction (LEED), and angle-resolved photoemission spectroscopy (ARPES) techniques. BaSnO3_3/Ba0.96_{0.96}La0.04_{0.04}SnO3_3/SrTiO3_3 (10 nm/100 nm/0.5 mm) samples were grown using pulsed-laser deposition (PLD) method and were \emph{ex-situ} transferred from PLD chamber to ultra-high vacuum (UHV) chambers for annealing, LEED and ARPES studies. UHV annealing starting from 300^{\circ}C up to 550^{\circ}C, followed by LEED and ARPES measurements show 1×\times1 surfaces with non-dispersive energy-momentum bands. The 1×\times1 surface reconstructs into a 2\sqrt{2}×\times2R45\sqrt{2}R45^\circ one at the annealing temperature of 700^{\circ}C where the ARPES data shows clear dispersive bands with valence band maximum located around 3.3 eV below Fermi level. While the 2\sqrt{2}×\times2R45\sqrt{2}R45^\circ surface reconstruction is stable under further UHV annealing, it is reversed to 1×\times1 surface by annealing the sample in 400 mTorr oxygen at 600^{\circ}C. Another UHV annealing at 600^{\circ}C followed by LEED and ARPES measurements, suggests that LEED 2\sqrt{2}×\times2R45\sqrt{2}R45^\circ surface reconstruction and ARPES dispersive bands are reproduced. Our results provide a better picture of electronic structure of BaSnO3_3 surface and are suggestive of role of oxygen vacancies in the reversible 2\sqrt{2}×\times2R45\sqrt{2}R45^\circ surface reconstruction.Comment: 7 pages, 4 figures, Journa

    Roles of the mitochondrial Na+-Ca2+ exchanger, NCLX, in B lymphocyte chemotaxis

    Get PDF
    Lymphocyte chemotaxis plays important roles in immunological reactions, although the mechanism of its regulation is still unclear. We found that the cytosolic Na+-dependent mitochondrial Ca2+ efflux transporter, NCLX, regulates B lymphocyte chemotaxis. Inhibiting or silencing NCLX in A20 and DT40 B lymphocytes markedly increased random migration and suppressed the chemotactic response to CXCL12. In contrast to control cells, cytosolic Ca2+ was higher and was not increased further by CXCL12 in NCLX-knockdown A20 B lymphocytes. Chelating intracellular Ca2+ with BAPTA-AM disturbed CXCL12-induced chemotaxis, suggesting that modulation of cytosolic Ca2+ via NCLX, and thereby Rac1 activation and F-actin polymerization, is essential for B lymphocyte motility and chemotaxis. Mitochondrial polarization, which is necessary for directional movement, was unaltered in NCLX-knockdown cells, although CXCL12 application failed to induce enhancement of mitochondrial polarization, in contrast to control cells. Mouse spleen B lymphocytes were similar to the cell lines, in that pharmacological inhibition of NCLX by CGP-37157 diminished CXCL12-induced chemotaxis. Unexpectedly, spleen T lymphocyte chemotaxis was unaffected by CGP-37157 treatment, indicating that NCLX-mediated regulation of chemotaxis is B lymphocyte-specific, and mitochondria-endoplasmic reticulum Ca2+ dynamics are more important in B lymphocytes than in T lymphocytes. We conclude that NCLX is pivotal for B lymphocyte motility and chemotaxis
    corecore