2,395 research outputs found
Development and characterization analysis of a radar polarimeter
The interaction of electromagnetic waves with natural earth surface was of interest for many years. A particular area of interest in controlled remote sensing experiments is the phenomena of depolarization. The development stages of the radar system are documented. Also included are the laboratory procedures which provides some information about the specifications of the system. The radar system developed is termed the Radar Polarimeter System. A better insight of the operation of the RPS in terms of the newly developed technique--synthetic aperture radar system is provided. System performance in tems of radar cross section, in terms of power, and in terms of signal to noise ratio are also provided. In summary, an overview of the RPS in terms of its operation and design as well as how it will perform in the field is provided
Radar cross calibration investigation TAMU radar polarimeter calibration measurements
A short pulse, 20 MHz bandwidth, three frequency radar polarimeter system (RPS) operates at center frequencies of 10.003 GHz, 4.75 GHz, and 1.6 GHz and utilizes dual polarized transmit and receive antennas for each frequency. The basic lay-out of the RPS is different from other truck mounted systems in that it uses a pulse compression IF section common to all three RF heads. Separate transmit and receive antennas are used to improve the cross-polarization isolation at each particular frequency. The receive is a digitally controlled gain modulated subsystem and is interfaced directly with a microprocesser computer for control and data manipulation. Antenna focusing distance, focusing each antenna pair, rf head stability, and polarization characteristics of RPS antennas are discussed. Platform and data acquisition procedures are described
Magnetic domain wall motion in a nanowire: depinning and creep
The domain wall motion in a magnetic nanowire is examined theoretically in
the regime where the domain wall driving force is weak and its competition
against disorders is assisted by thermal agitations. Two types of driving
forces are considered; magnetic field and current. While the field induces the
domain wall motion through the Zeeman energy, the current induces the domain
wall motion by generating the spin transfer torque, of which effects in this
regime remain controversial. The spin transfer torque has two mutually
orthogonal vector components, the adiabatic spin transfer torque and the
nonadiabatic spin transfer torque. We investigate separate effects of the two
components on the domain wall depinning rate in one-dimensional systems and on
the domain wall creep velocity in two-dimensional systems, both below the
Walker breakdown threshold. In addition to the leading order contribution
coming from the field and/or the nonadiabatic spin transfer torque, we find
that the adiabatic spin transfer torque generates corrections, which can be of
relevance for an unambiguous analysis of experimental results. For instance, it
is demonstrated that the neglect of the corrections in experimental analysis
may lead to incorrect evaluation of the nonadiabaticity parameter. Effects of
the Rashba spin-orbit coupling on the domain wall motion are also analyzed.Comment: 14 pages, 3 figure
There is detectable variation in the lipidomic profile between stable and progressive patients with idiopathic pulmonary fibrosis (IPF)
Background
Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease characterized by fibrosis and progressive loss of lung function. The pathophysiological pathways involved in IPF are not well understood. Abnormal lipid metabolism has been described in various other chronic lung diseases including asthma and chronic obstructive pulmonary disease (COPD). However, its potential role in IPF pathogenesis remains unclear.
Methods
In this study, we used ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) to characterize lipid changes in plasma derived from IPF patients with stable and progressive disease. We further applied a data-independent acquisition (DIA) technique called SONAR, to improve the specificity of lipid identification.
Results
Statistical modelling showed variable discrimination between the stable and progressive subjects, revealing differences in the detection of triglycerides (TG) and phosphatidylcholines (PC) between progressors and stable IPF groups, which was further confirmed by mass spectrometry imaging (MSI) in IPF tissue.
Conclusion
This is the first study to characterise lipid metabolism between stable and progressive IPF, with results suggesting disparities in the circulating lipidome with disease progression
Evaluation of measurement accuracies of the Higgs boson branching fractions in the International Linear Collider
Precise measurement of Higgs boson couplings is an important task for
International Linear Collider (ILC) experiments and will facilitate the
understanding of the particle mass generation mechanism.
In this study, the measurement accuracies of the Higgs boson branching
fractions to the and quarks and gluons, , were evaluated with the full International Large
Detector model (\texttt{ILD\_00}) for the Higgs mass of 120 GeV at the
center-of-mass (CM) energies of 250 and 350 GeV using neutrino, hadronic and
leptonic channels and assuming an integrated luminosity of ,
and an electron (positron) beam polarization of -80% (+30%).
We obtained the following measurement accuracies of the Higgs cross section
times branching fraction () for decay
of the Higgs into , , and ; as 1.0%, 6.9%, and 8.5% at
a CM energy of 250 GeV and 1.0%, 6.2%, and 7.3% at 350 GeV, respectively.
After the measurement accuracy of the cross section ()
was corrected using the results of studies at 250 GeV and their extrapolation
to 350 GeV, the derived measurement accuracies of the branching fractions
() to , , and gg were 2.7%, 7.3%, and 8.9% at
a CM energy of 250 GeV and 3.6%, 7.2%, and 8.1% at 350 GeV, respectively.Comment: 15 pages, 6 figure
Recognition of dileucine-based sorting signals from HIV-1 Nef and LIMP-II by the AP-1 γ–σ1 and AP-3 δ–σ3 hemicomplexes
The sorting of transmembrane proteins to endosomes and lysosomes is mediated by signals present in the cytosolic tails of the proteins. A subset of these signals conform to the [DE]XXXL[LI] consensus motif and mediate sorting via interactions with heterotetrameric adaptor protein (AP) complexes. However, the identity of the AP subunits that recognize these signals remains controversial. We have used a yeast three-hybrid assay to demonstrate that [DE]XXXL[LI]-type signals from the human immunodeficiency virus negative factor protein and the lysosomal integral membrane protein II interact with combinations of the γ and σ1 subunits of AP-1 and the δ and σ3 subunits of AP-3, but not the analogous combinations of AP-2 and AP-4 subunits. The sequence requirements for these interactions are similar to those for binding to the whole AP complexes in vitro and for function of the signals in vivo. These observations reveal a novel mode of recognition of sorting signals involving the γ/δ and σ subunits of AP-1 and AP-3
D04. Department of Pharmaceutics and Drug Delivery
Corresponding author (Pharmaceutics and Drug Delivery): Eman Ashour, [email protected]://egrove.olemiss.edu/pharm_annual_posters/1026/thumbnail.jp
On Unbounded Composition Operators in -Spaces
Fundamental properties of unbounded composition operators in -spaces are
studied. Characterizations of normal and quasinormal composition operators are
provided. Formally normal composition operators are shown to be normal.
Composition operators generating Stieltjes moment sequences are completely
characterized. The unbounded counterparts of the celebrated Lambert's
characterizations of subnormality of bounded composition operators are shown to
be false. Various illustrative examples are supplied
Systemic long-term metabolic effects of acute non-severe paediatric burn injury
A growing body of evidence supports the concept of a systemic response to non-severe thermal trauma. This provokes an immunosuppressed state that predisposes paediatric patients to poor recovery and increased risk of secondary morbidity. In this study, to understand the long-term systemic effects of non-severe burns in children, targeted mass spectrometry assays for biogenic amines and tryptophan metabolites were performed on plasma collected from child burn patients at least three years post injury and compared to age and sex matched non-burn (healthy) controls. A panel of 12 metabolites, including urea cycle intermediates, aromatic amino acids and quinolinic acid were present in significantly higher concentrations in children with previous burn injury. Correlation analysis of metabolite levels to previously measured cytokine levels indicated the presence of multiple cytokine-metabolite associations in the burn injury participants that were absent from the healthy controls. These data suggest that there is a sustained immunometabolic imprint of non-severe burn trauma, potentially linked to long-term immune changes that may contribute to the poor long-term health outcomes observed in children after burn injury
Correlating metabolic and anatomic responses of primary lung cancers to radiotherapy by combined F-18 FDG PET-CT imaging
<p>Abstract</p> <p>Background</p> <p>To correlate the metabolic changes with size changes for tumor response by concomitant PET-CT evaluation of lung cancers after radiotherapy.</p> <p>Methods</p> <p>36 patients were studied pre- and post-radiotherapy with<sup>18</sup>FDG PET-CT scans at a median interval of 71 days. All of the patients were followed clinically and radiographically after a mean period of 342 days for assessment of local control or failure rates. Change in size (sum of maximum orthogonal diameters) was correlated with that of maximum standard uptake value (SUV) of the primary lung cancer before and after conventional radiotherapy.</p> <p>Results</p> <p>There was a significant reduction in both SUV and size of the primary cancer after radiotherapy (p < 0.00005). Among the 20 surviving patients, the sensitivity, specificity, and accuracy using PET (SUV) were 94%, 50%, 90% respectively and the corresponding values using and CT (size criteria) were 67%, 50%, and 65% respectively. The metabolic change (SUV) was highly correlated with the change in size by a quadratic function. In addition, the mean percentage metabolic change was significantly larger than that of size change (62.3 ± 32.7% vs 47.1 ± 26.1% respectively, p = 0.03)</p> <p>Conclusion</p> <p>Correlating and incorporating metabolic change by PET into size change by concomitant CT is more sensitive in assessing therapeutic response than CT alone.</p
- …