13 research outputs found

    Integrative Modeling of Quantitative Plasma Lipoprotein, Metabolic, and Amino Acid Data Reveals a Multiorgan Pathological Signature of SARS-CoV-2 Infection.

    Get PDF
    The metabolic effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on human blood plasma were characterized using multiplatform metabolic phenotyping with nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS). Quantitative measurements of lipoprotein subfractions, α-1-acid glycoprotein, glucose, and biogenic amines were made on samples from symptomatic coronavirus disease 19 (COVID-19) patients who had tested positive for the SARS-CoV-2 virus (n = 17) and from age- and gender-matched controls (n = 25). Data were analyzed using an orthogonal-projections to latent structures (OPLS) method and used to construct an exceptionally strong (AUROC = 1) hybrid NMR-MS model that enabled detailed metabolic discrimination between the groups and their biochemical relationships. Key discriminant metabolites included markers of inflammation including elevated α-1-acid glycoprotein and an increased kynurenine/tryptophan ratio. There was also an abnormal lipoprotein, glucose, and amino acid signature consistent with diabetes and coronary artery disease (low total and HDL Apolipoprotein A1, low HDL triglycerides, high LDL and VLDL triglycerides), plus multiple highly significant amino acid markers of liver dysfunction (including the elevated glutamine/glutamate and Fischer's ratios) that present themselves as part of a distinct SARS-CoV-2 infection pattern. A multivariate training-test set model was validated using independent samples from additional SARS-CoV-2 positive patients and controls. The predictive model showed a sensitivity of 100% for SARS-CoV-2 positivity. The breadth of the disturbed pathways indicates a systemic signature of SARS-CoV-2 positivity that includes elements of liver dysfunction, dyslipidemia, diabetes, and coronary heart disease risk that are consistent with recent reports that COVID-19 is a systemic disease affecting multiple organs and systems. Metabolights study reference: MTBLS2014

    Cardiometabolic disease risk markers are increased following burn injury in children

    Get PDF
    IntroductionBurn injury in children causes prolonged systemic effects on physiology and metabolism leading to increased morbidity and mortality, yet much remains undefined regarding the metabolic trajectory towards specific health outcomes.MethodsA multi-platform strategy was implemented to evaluate the long-term immuno-metabolic consequences of burn injury combining metabolite, lipoprotein, and cytokine panels. Plasma samples from 36 children aged 4–8 years were collected 3 years after a burn injury together with 21 samples from non-injured age and sex matched controls. Three different 1H Nuclear Magnetic Resonance spectroscopic experiments were applied to capture information on plasma low molecular weight metabolites, lipoproteins, and α-1-acid glycoprotein.ResultsBurn injury was characterized by underlying signatures of hyperglycaemia, hypermetabolism and inflammation, suggesting disruption of multiple pathways relating to glycolysis, tricarboxylic acid cycle, amino acid metabolism and the urea cycle. In addition, very low-density lipoprotein sub-components were significantly reduced in participants with burn injury whereas small-dense low density lipoprotein particles were significantly elevated in the burn injured patient plasma compared to uninjured controls, potentially indicative of modified cardiometabolic risk after a burn. Weighted-node Metabolite Correlation Network Analysis was restricted to the significantly differential features (q <0.05) between the children with and without burn injury and demonstrated a striking disparity in the number of statistical correlations between cytokines, lipoproteins, and small molecular metabolites in the injured groups, with increased correlations between these groups.DiscussionThese findings suggest a ‘metabolic memory’ of burn defined by a signature of interlinked and perturbed immune and metabolic function. Burn injury is associated with a series of adverse metabolic changes that persist chronically and are independent of burn severity and this study demonstrates increased risk of cardiovascular disease in the long-term. These findings highlight a crucial need for improved longer term monitoring of cardiometabolic health in a vulnerable population of children that have undergone burn injury

    The potential of Triclabendazole in combination with Praziquantel for the treatment of Schistosoma mansoni infections

    Get PDF
    Previous work has suggested that triclabendazole, a member of the benzimidazole group of compounds, possessed efficacy against Schistosoma mansoni. In view of recent indications in praziquantel treatment failures and loss of sensitivity, it is imperative that new anti-schistosomals are developed as contingent treatment options, while resistance alleles, if any, remain at low frequencies. While recent studies have indicated that triclabendazole monotherapy exert weak anti-schistosomal effects, the combinatorial application of triclabendazole with praziquantel has not been explored. To assess this hypothesis, triclabendazole and its metabolites were initially assessed against the many life-stages of Schistosoma mansoni in vitro. Combinatorial drug and isobologram analyses against adult Schistosoma mansoni was also performed, and subsequently applied against other parasitic models (Giardia duodenalis and Haemonchus contortus) to assess the specificity of such effects. Subsequently, the drug combinations were assessed against Schistosoma mansoni in vivo. To further assess the suitability of combinatorial drug applications, an economic model was developed to project the cost-efficacy of praziquantel-triclabendazole drug combinations in a global focus. It was concluded that triclabendazole and its metabolites possessed good efficacy against immature schistosomula, albeit weak efficacy against adult Schistosoma mansoni. Upon combination with praziquantel, however, a strong synergistic effect against adult worms were observed in vitro. Praziquantel and triclabendazole were also shown to possess unique and independent ovicidal modes of action that can be of clinical significance. More importantly, in vivo drug trials concluded that the combinations exerted additive effects against Schistosoma mansoni harbored in mice. Economic modeling and cost-effectiveness analyses further demonstrated the feasibility of this drug combination, and may represent a new line of treatment against mansonial schistosomiasi

    NMR spectroscopic windows on the systemic effects of SARS-CoV-2 infection on plasma lipoproteins and metabolites in relation to circulating cytokines

    Get PDF
    To investigate the systemic metabolic effects of SARS-CoV-2 infection, we analyzed 1H NMR spectroscopic data on human blood plasma and co-modeled with multiple plasma cytokines and chemokines (measured in parallel). Thus, 600 MHz 1H solvent-suppressed single-pulse, spin-echo, and 2D J-resolved spectra were collected on plasma recorded from SARS-CoV-2 rRTPCR-positive patients (n = 15, with multiple sampling timepoints) and age-matched healthy controls (n = 34, confirmed rRT-PCR negative), together with patients with COVID-19/influenza-like clinical symptoms who tested SARSCoV-2 negative (n = 35). We compared the single-pulse NMR spectral data with in vitro diagnostic research (IVDr) information on quantitative lipoprotein profiles (112 parameters) extracted from the raw 1D NMR data. All NMR methods gave highly significant discrimination of SARS-CoV-2 positive patients from controls and SARS-CoV-2 negative patients with individual NMR methods, giving different diagnostic information windows on disease-induced phenoconversion. Longitudinal trajectory analysis in selected patients indicated that metabolic recovery was incomplete in individuals without detectable virus in the recovery phase. We observed four plasma cytokine clusters that expressed complex differential statistical relationships with multiple lipoproteins and metabolites. These included the following: cluster 1, comprising MIP-1ÎČ, SDF-1α, IL22, and IL-1α, which correlated with multiple increased LDL and VLDL subfractions; cluster 2, including IL-10 and IL-17A, which was only weakly linked to the lipoprotein profile; cluster 3, which included IL-8 and MCP-1 and were inversely correlated with multiple lipoproteins. IL-18, IL-6, and IFN-Îł together with IP-10 and RANTES exhibited strong positive correlations with LDL1−4 subfractions and negative correlations with multiple HDL subfractions. Collectively, these data show a distinct pattern indicative of a multilevel cellular immune response to SARS CoV-2 infection interacting with the plasma lipoproteome giving a strong and characteristic immunometabolic phenotype of the disease. We observed that some patients in the respiratory recovery phase and testing virus-free were still metabolically highly abnormal, which indicates a new role for these technologies in assessing full systemic recovery

    Systemic long-term metabolic effects of acute non-severe paediatric burn injury

    No full text
    A growing body of evidence supports the concept of a systemic response to non-severe thermal trauma. This provokes an immunosuppressed state that predisposes paediatric patients to poor recovery and increased risk of secondary morbidity. In this study, to understand the long-term systemic effects of non-severe burns in children, targeted mass spectrometry assays for biogenic amines and tryptophan metabolites were performed on plasma collected from child burn patients at least three years post injury and compared to age and sex matched non-burn (healthy) controls. A panel of 12 metabolites, including urea cycle intermediates, aromatic amino acids and quinolinic acid were present in significantly higher concentrations in children with previous burn injury. Correlation analysis of metabolite levels to previously measured cytokine levels indicated the presence of multiple cytokine-metabolite associations in the burn injury participants that were absent from the healthy controls. These data suggest that there is a sustained immunometabolic imprint of non-severe burn trauma, potentially linked to long-term immune changes that may contribute to the poor long-term health outcomes observed in children after burn injury.</p

    Systemic perturbations in amine and kynurenine metabolism associated with acute SARS-CoV-2 infection and inflammatory cytokine responses

    No full text
    We performed quantitative metabolic phenotyping of blood plasma in parallel with cytokine/chemokine analysis from participants who were either SARS-CoV-2 (+) (n = 10) or SARS-CoV-2 (-) (n = 49). SARS-CoV-2 positivity was associated with a unique metabolic phenotype and demonstrated a complex systemic response to infection, including severe perturbations in amino acid and kynurenine metabolic pathways. Nine metabolites were elevated in plasma and strongly associated with infection (quinolinic acid, glutamic acid, nicotinic acid, aspartic acid, neopterin, kynurenine, phenylalanine, 3-hydroxykynurenine, and taurine; p \u3c 0.05), while four metabolites were lower in infection (tryptophan, histidine, indole-3-acetic acid, and citrulline; p \u3c 0.05). This signature supports a systemic metabolic phenoconversion following infection, indicating possible neurotoxicity and neurological disruption (elevations of 3-hydroxykynurenine and quinolinic acid) and liver dysfunction (reduction in Fischer’s ratio and elevation of taurine). Finally, we report correlations between the key metabolite changes observed in the disease with concentrations of proinflammatory cytokines and chemokines showing strong immunometabolic disorder in response to SARS-CoV-2 infection
    corecore