
Integrative Modeling of Quantitative Plasma Lipoprotein, Metabolic,
and Amino Acid Data Reveals a Multiorgan Pathological Signature
of SARS-CoV‑2 Infection
Torben Kimhofer, Samantha Lodge, Luke Whiley, Nicola Gray, Ruey Leng Loo, Nathan G. Lawler,
Philipp Nitschke, Sze-How Bong, David L. Morrison, Sofina Begum, Toby Richards, Bu B. Yeap,
Chris Smith, Kenneth G. C. Smith, Elaine Holmes,* and Jeremy K. Nicholson*

Cite This: J. Proteome Res. 2020, 19, 4442−4454 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: The metabolic effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on human blood
plasma were characterized using multiplatform metabolic phenotyping with nuclear magnetic resonance (NMR) spectroscopy and
liquid chromatography−mass spectrometry (LC-MS). Quantitative measurements of lipoprotein subfractions, α-1-acid glycoprotein,
glucose, and biogenic amines were made on samples from symptomatic coronavirus disease 19 (COVID-19) patients who had tested
positive for the SARS-CoV-2 virus (n = 17) and from age- and gender-matched controls (n = 25). Data were analyzed using an
orthogonal-projections to latent structures (OPLS) method and used to construct an exceptionally strong (AUROC = 1) hybrid
NMR-MS model that enabled detailed metabolic discrimination between the groups and their biochemical relationships. Key
discriminant metabolites included markers of inflammation including elevated α-1-acid glycoprotein and an increased kynurenine/
tryptophan ratio. There was also an abnormal lipoprotein, glucose, and amino acid signature consistent with diabetes and coronary
artery disease (low total and HDL Apolipoprotein A1, low HDL triglycerides, high LDL and VLDL triglycerides), plus multiple
highly significant amino acid markers of liver dysfunction (including the elevated glutamine/glutamate and Fischer’s ratios) that
present themselves as part of a distinct SARS-CoV-2 infection pattern. A multivariate training-test set model was validated using
independent samples from additional SARS-CoV-2 positive patients and controls. The predictive model showed a sensitivity of
100% for SARS-CoV-2 positivity. The breadth of the disturbed pathways indicates a systemic signature of SARS-CoV-2 positivity
that includes elements of liver dysfunction, dyslipidemia, diabetes, and coronary heart disease risk that are consistent with recent
reports that COVID-19 is a systemic disease affecting multiple organs and systems. Metabolights study reference: MTBLS2014.

KEYWORDS: COVID-19, SARS-CoV-2, lipoproteins, amino acids, NMR spectroscopy, mass spectrometry, metabolic phenotyping,
biomarkers, systems model, multiorgan damage, mosaic disease

■ INTRODUCTION

The coronavirus disease 19 (COVID-19) pandemic resulting
from severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) infection has spread to 213 countries, infected >24
million people, and killed >820 thousand people worldwide.
The disease continues unchecked in many countries and is still
accelerating in some. COVID-19 symptoms range from nearly
asymptomatic to mild sore throat and fatigue to severe
respiratory distress, multiorgan failure, and, in respiratory
cases, death due to an immunological cytokine storm.1,2

Recent studies indicate that SARS-CoV-2 can also precipitate a
type of new-onset diabetes3 and liver dysfunction,4 with up to
77% of SARS-CoV-2 positive patients having abnormal liver
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function tests irrespective of the level of respiratory disease
severity.5 There are numerous reports of other COVID-19
related pathologies including pulmonary embolism,6 neuro-
logical inflammation and encephalitis,7,8 renal damage,9

gastrointestinal disorder,10 heart disease,11 and stroke12

complicating clinical presentations and suggesting that
COVID-19 is a complex systemic as well as an acute
respiratory disease.
Several countries controlled the first wave of the infections

well, but incomplete or inadequate testing and ineffective
isolation measures resulted in significant second waves of
disease spread as seen in Australia, Singapore, Japan, and South
Korea. Currently, there is no proven treatment or cure for this
disease, although it has been suggested that the steroid
dexamethasone13 and antiviral Remdesivir14,15 can reduce
mortality and recovery times in severe cases. There is also no
current testing paradigm that enables travelers to avoid
quarantine for 14 days, which is proving a challenge to
unlocking borders or allowing previous levels of business and
leisure travel. To effectively navigate the healthcare pathway
for the next COVID-19 wave, we also need to be able to
accurately diagnose and predict the severity of disease for
virus-infected individuals at an early stage so that they can be
more effectively monitored and managed. Improved and earlier
management would assist both short- and long-term health
outcomes and reduce the financial burden on the healthcare
system.
There has been some progress in developing rapid tests for

SARS-CoV-2 exposure via qPCR and immunoassay methods
to detect IgA, IgG, and IgM following seroconversion.
However, the sampling window for virus detection is relatively
small, and not all patients seroconvert, raising serious questions
about testing accuracy and the potential for a high false-
negative reporting rate.16 SARS-CoV-2 tests currently
documented in the literature use real-time reverse tran-
scriptase-polymerase chain reaction (rRT-PCR) of nasophar-
yngeal swabs to confirm clinical diagnosis.2 They detect
genetic components of the virus, the RNA, but this is only
possible if the virus is present at a detectable level while an
individual is actively infected.
As all current tests are dependent on direct virus detection

or immune response to virus exposure, both of which have
significant practical and biological weaknesses, we propose an
alternative approach to detection based on phenoconversion.
The concept of phenoconversion is well known in the field of
drug metabolism, where exposure to a specific drug changes
the phenotype of the organism by inducing a specific
Cytochrome P450 enzyme that changes the subsequent
metabolism of the drug on further administration.14 More
broadly speaking, when any noxious agent (chemical or
biological) is introduced into the body there is a series of rapid
localized and systemic effects in metabolism and physiology
which evolve in a complex time series.17,18 This is also a
process of phenoconversionthe change from a normal or
healthy state to a disordered pathophysiological state or overt
pathology. This is typically associated with a range of
metabolic biomarkers that can be analyzed specifically with
respect to disease state detection and measurement of
severity.17 In this case, we hypothesize that both SARS-CoV-
2 diagnostics and pathological effects can be understood in
terms of systemic phenoconversion, as expressed in the
metabolic profile of blood plasma.

Metabolic phenotypes obtained from spectroscopic meas-
urements on biological fluids give deep insights into a range of
pathophysiological processes.19 Spectroscopic data can be
modeled using a range of pattern recognition, multivariate
statistics, and artificial intelligence methods to classify disease
subtypes and severity/acuity and recovery paths, deriving
latent biomarker information that gives insight into the
mechanistic processes of the disease.19 A wide range of
diseases have been studied extensively with these methods
including diabetes,20,21 obesity,22,23 vascular injury,24 cancers,25

and neurological conditions.26,27

The peer-reviewed SARS-CoV-2/COVID-19 metabolic
literature is still relatively sparse, although recent reports
indicate that diabetes3 and liver injury4,5,9 are common but
previously overlooked effects of SARS-CoV-2 infection, and
these abnormalities would be expected to yield highly
characteristic metabolic signatures. A recent report indicates
multiple metabolic and proteomic disruptions caused by the
disease,28 but these studies were performed on samples that
had been heat-treated prior to analysis, which casts doubt on
their absolute validity due to potential analytical metabolite
losses or protein precipitation. We have investigated such
sample disruptions in detail with respect to our chosen
analytical modalities in the current study and have presented
these validation data in another report.29 In the studies
presented here, we have used nondisrupted samples analyzed
in a class II biosecurity certified laboratory (The Australian
National Phenome Centre). Because of the indications of
systemic effects relating to diabetes and liver disease,3−5,9 we
chose to use technology platforms that would be expected to
be revealing for those diseases as well as cardiovascular side
effects of COVID-19. Thus, we applied quantitative high-field
NMR spectroscopy to measure multiparametric plasma
lipoprotein profiles and a set of low-molecular-weight
metabolites30 together with quantitative amino acid and
biogenic amine analysis (35 parameters) based on a ultra-
performance liquid chromatography triple quadrupole mass
spectrometry platform.31

Under informed patient consent and with ethical committee
approval, we collected plasma specimens from SARS-CoV-2
positive (rRT-PCR) patients (n = 17, some patients with
multiple sampling points) and a control group consisting of
healthy age and BMI-matched control participants (n = 25).
We posed a series of questions about the fundamental nature
of SARS-CoV-2 infection as follows: First, is there a diagnostic
signature of SARS-CoV-2 positivity that is present irrespective
of the time of collection in the patient journey and irrespective
of overall severity? Second, can we build a reliable COVID-19
disease prediction model with the intention to identify strong
metabolic predictors and candidates for a possible future
development of a metabolic phenoconversion test that
overcomes the limitations of existing tests, for SARS-CoV-2
virus or seroconversion? Therefore, the primary purpose of
these studies is to determine the underlying metabolic
signatures of SARS-CoV-2 positivity and not explicitly a new
test for the disease, which would require large sample sets and
further rigorous validation of the predictive methods (this is
currently ongoing in our laboratories). We used a novel hybrid
NMR-MS, lipoprotein−small molecule, glycoprotein modeling
data training set. We also explored the biomarker signatures
from both technologies that suggested metabolic similarities
with diabetes and liver damage that was common between the
SARS-CoV-2 positive patients. Our findings have implications
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for the potential development of novel phenoconversion
models and tests for the detection of SARS-CoV-2 infection
and for the long-term follow up on the health of “recovered”
COVID-19 disease patients.

■ MATERIALS AND METHODS

Patient Enrolment and Sample Collection

Plasma samples were collected from 17 adults who presented
COVID-19 disease symptoms and subsequently tested positive
for SARS-CoV-2 infection from upper and/lower respiratory
tract swabs by RT-PCR and 25 healthy controls recruited from
the population who did not and had not exhibited any
COVID-19 disease symptoms and were serologically tested
negative with respect to IgA/IgG antibodies as a part of this
research study. All samples used in the study were single time-
point collections, except for one individual who tested positive
for SARS-CoV-2 and provided three samples during the
hospital stay (Figure 2B). A description of the cohort including
demographic data (Table S1) and clinical symptoms (Table
S2) is provided in the Supporting Information (SI). Serological
testing for SARS-CoV-2 antibodies was performed by the
PathWest testing laboratories, Western Australia on 10 μL of
plasma samples using a commercial point-of-care COVID-19
IgA/IgG test. The study was initiated at Fiona Stanley Hospital
within the Western Australian South Metropolitan Health
Service catchment as part of the International Severe Acute
Respiratory and Emerging Infection Consortium (ISARIC)/
World Health Organisation (WHO) pandemic trail framework
(SMHS Research Governance Office PRN:3976 and Murdoch
University Ethics no. 2020/052). Healthy controls were
enrolled as volunteers and provided study details, and written
consent was obtained prior to data collection in accordance
with the ethical governance (Murdoch University Ethics no.
2020/053).

Sample Analysis
1H NMR Spectroscopy of Blood Plasma. 1H NMR

spectroscopy was completed according to a previously
published method,30 briefly described as follows: Blood
samples were centrifuged at 13 000g for 10 min at 4 °C. The
plasma supernatant was mixed with 75 mM pH 7.4 sodium
phosphate, buffer in 1:1 ratio, and 600 μL were transferred into
a Bruker SampleJet NMR tube (⌀ 5 mm), sealed with POM
balls added to the caps. To produce quality-control samples, 50
μL supernatant of all individual study samples were pooled,
mixed, and transferred into 5 mm SampleJet NMR tubes using
the same method as described for the study samples.
All NMR analysis was completed on Bruker 600 MHz

Avance III HD spectrometers equipped with a BBI probes and
fitted with the Bruker SampleJet robot cooling system set to 5
°C. A full quantitative calibration was completed prior to the
analysis using the protocol described by Dona et al.30 All
experiments were completed using the Bruker in vitro
Diagnostics research (IVDr) methods.32 For each blood
sample, three experiments were completed in automation
with a total analysis time of 12.5 min: first, a 1H 1D experiment
with solvent presaturation33 (32 scans, 98 304 data points,
spectral width of 18028.85 Hz), a 1D Carr−Purcell−
Meiboom−Gill (CPMG) spin−echo experiment (32 scans,
73 728 data points, spectral width of 12019.23 Hz), and a 2D
J-resolved experiment (2 scans with 40 t1 increments). All data
were processed in automation using Bruker Topspin 3.6.2 and

ICON NMR to achieve phasing, baseline correction, and
calibration to TSP (δ = 0).
Lipoprotein reports containing 112 lipoprotein parameters

for each sample were generated using the Bruker IVDr
Lipoprotein Subclass Analysis (B.I.-LISA) method.32 This is
completed by mathematically interrogating and quantifying the
−CH2 (δ = 1.25) and −CH3 (δ = 0.8) peaks of the 1D
spectrum after normalization to the Bruker QuantRef manager
within Topspin using a PLS-2 regression model. The various
lipoprotein subclasses included different molecular compo-
nents of intermediate-density lipoprotein (IDL, density 1.006−
1.019 kg/L), very low-density lipoprotein (VLDL, 0.950−
1.006 kg/L), low-density lipoprotein (LDL, density 1.09−1.63
kg/L), and high-density lipoprotein (HDL, density 1.063−
1.210 kg/L). The LDL subfraction was organized into six
density classes (LDL-1 1.019−1.031 kg/L, LDL-2 1.031−
1.034 kg/L, LDL-3 1.034−1.037 kg/L, LDL-4 1.037−1.040
kg/L, LDL-5 1.040−1.044 kg/L, LDL-6 1.044−1.063 kg/L),
and the HDL subfractions were organized into four density
classes (HDL-1 1.063−1.100 kg/L, HDL-2 1.100−1.125 kg/L,
HDL-3 1.125−1.175 kg/L, and HDL-4 1.175−1.210 kg/L).
See Table S3 for a full description of the lipoprotein
annotations.
The lactate/pyruvate ratio was determined from CPMG

NMR data using the integral under the CH peak of lactate at δ
= 4.13 and the acetyl CH3 peak of pyruvate at δ = 2.48 in 1D-
CPMG experiments. The α-1-acid glycoprotein N-acetyl-
glucosamino (N-acetyl) signal integrals as calculated from
calculated as Glyc A from the superimpositions of terminal N-
acetyl signals (δ = 2.06) and Glyc B calculated from branched
chain N-acetyls (δ = 2.10) were determined from the 1D
CPMG spectra by integration.

Mass Spectrometry and Amino Acid/Biogenic Amine
Quantification. Fully quantitated amino acid analysis for 35
species were performed based on a UPLC-triple quadrupole
MS method following derivitization using a previously
published method.31 Unlabeled amino acid standards and
ammonium formate were purchased from Sigma-Aldrich (MO,
USA). Stable isotope labeled internal standard noncanonical
and canonical amino acid mixes were purchased from
Cambridge Isotope Laboratories (MA, USA). Water, acetoni-
trile, methanol and isopropanol (all Optima grade) were
purchased from Thermo Fisher Scientific. Calibrators and
quality controls were prepared from a stock solution of
physiological amino acids (acids, basics, and neutrals) at 500
μM. Asparagine and glutamine were prepared freshly at 0.5
mM on the day of analysis due to instability. A working stock
solution containing all amino acids was prepared at 400 μM in
water and separately diluted to 200, 100, 40, 20, 10, 4, 2, and 1
μM for calibrators and 300, 75, 15, and 3 μM for analytical
quality controls.
The stable isotope labeled (SIL) internal standard solution

(12.5 μM in water) was prepared from stocks of canonical and
noncanonical amino acids at 2.5 mM in water and stored at
−20 °C until use. Following addition of the SIL working
solution to each sample, methanol was added to effect protein
precipitation. Following centrifugation, the extract supernatant
was taken for a derivatization step with AccQTag reagent
(Waters Corp., Milford, MA, US). Finally, samples were then
diluted 1:50 with LC-MS grade water for analysis LC-MS
analysis.

Liquid Chromatography−Mass Spectrometry. Amino
acid analysis was performed using a Waters Acquity I-class
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UHPLC system (Waters Corp., Milford, MA, USA) coupled to
a Waters TQ-XS triple quadrupole mass analyzer (Waters
Corp., Wilmslow, UK). Chromatographic separation was
achieved using an Acquity UPLC HSS T3 1.8 μm 2.1 × 150
mm column (Waters, Milford, MA, USA). Eluent A consisted
of 2 mM ammonium formate in water and eluent B consisted
of 2 mM ammonium formate acetonitrile/water 95/5 (v/v).
The flow rate was 0.6 mL/min and column temperature were
maintained at 45 °C. The autosampler compartment was
cooled to 4 °C and a 2 μL injection volume was performed
using full-loop injection mode. Gradient elution was performed
starting with 5% B for 0.2 min, increasing to 30% B at 5 min
100% B at 5.1 min for 1 min before returning to 5% B until 7.5
min. The weak and strong washes were water/acetonitrile 95/5
(v/v) and isopropanol, respectively. A Waters TQ-XS triple
quadrupole mass analyzer was operated with positive electro-
spray ionization (ESI) and selected reaction monitoring
(SRM). The ion source settings were as follows: capillary
voltage = 1.0 kV; cone voltage = 30 V; desolvation gas flow =
1000 L/h; cone gas flow = 150 L/h; nebulizer = 7.0 bar;
desolvation temperature = 650 °C; source temperature = 150
°C. Mass spectrometric data were collected with MassLynx 4.2
and processed using the TargetLynx package to generate
calculated concentrations. Calibration curves were linearly
fitted with a weighting factor of 1/x2.
Raw data have been deposited to the EMBL-EBI

MetaboLights database34 with the identifier MTBLS2014.
The complete data set can be accessed via https://www.ebi.ac.
uk/metabolights/MTBLS2014.
NMR and Mass Spectrometry Data Modeling. A

detailed description of the data modeling can be found in
the Supporting Information. In summary, NMR and MS-
derived data were combined and interrogated using principal
components analysis (PCA) and orthogonal-partial least-

squares discriminant analysis (OPLS-DA) as unsupervised
and supervised multivariate analysis techniques, respectively.
Data were mean-centered and autoscaled prior to multivariate
modeling.

OPLS-DA Model Training. The training sample set
comprised a single time point from seven patients who tested
positive for SARS-CoV-2 infection by a PCR swab test. Eight
healthy controls were matched in sex and age, SARS-CoV-2
negativity was established serologically by double negative
outcome in Anti-SARS-CoV-2 IgG and IgA ELISA from
EUROIMMUN (Lübeck, Germany). An OPLS model with 1
predictive + 1 orthogonal components was trained, and the
optimal number of components was determined using the area
under the receiver operator characteristic curve (AUROC)
calculated with predictive component scores derived with the
internal leave-one-out-cross validation (CV) procedure
(AUROCCV = 1, R2X= 0.25). Model validation was performed
with an independent sample set comprising 11 SARS-CoV-2
RNA positive individuals and 17 healthy controls (projections,
SI Section 1). The OPLS-DA scores plot (see Figure 2)
includes an additional seven samples representing the second
time point of SARS-CoV-2 positive tested individuals. Second
time point samples were excluded for the calculation of
sensitivity, specificity, and positive and negative predictive
values (SI Section 2). Variable importances: Statistical group
comparisons were performed with two-tailed Kruskal−Wallis
rank sum test with a significance level of α = 0.05. P values
were FDR-corrected using Benjamini−Yekutieli’s method,
Cliff’s delta (Cd) are reported as nonparametric effect size
measure (SI Section 1), taking values from −1 to 1, with an
absolute value of 1 indicating complete group separation and
the arithmetic sign indicating location in reference to the
healthy group.

Figure 1. Principal components analysis (PCA) scores (A) and loadings (B) calculated with data from control and SARS-CoV-2 positive samples
used for supervised model training and validation further below. Data included 157 metabolic variables derived from mass spectrometry (41
features) and proton NMR spectroscopy (116 features). The ellipse in panel A indicates Hotelling’s T2 statistic (α = 0.95), which can be
interpreted as a multivariate confidence interval. Key: Cyth, cystathionine; Etn, ethanolamine; GLC, glucose; GlycA, α-1-acid glycoprotein signal A;
GlycB, α-1-acid glycoprotein signal B; Kyn, kynurenine; 1-MHis, 1-methylhistidine; 3-MHis, 3-methylhistine. Upper case 4 letter code indicates
lipoproteins with 2 character prefix indicating particle types: HD, high density lipoprotein with density subfractions 1 to 4 (indicated by H1 to H4);
ID, intermediate density lipoprotein; LD, low-density lipoprotein with subfractions 1 to 3 (indicated by L1 to L3); VL, very low-density lipoprotein
with subfractions 1 to 4 (V1 to V5); TP, total plasma. Lipoprotein suffixes represent analytes: A1, Apolipoprotein A1; A2, Apolipoprotein A2; CH,
cholesterol; FC, free cholesterol; PL, phospholipids; TG, triglycerides; PN, Particle number.
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■ RESULTS AND DISCUSSION

The full cohort was comprised of 42 individuals with a mean
age of 59 years (±12 years), female to male ratio of 2:3 and an
average BMI of 29.4 kg/m2 (±9 kg/m2) (Table S1, Figure S1).
SARS-CoV-2 RNA positive-tested patients presented with
symptoms including fever, cough, shortness of breath and
fatigue (Table S2) and clinical biochemistry results from
SARS-CoV-2 patients are detailed in Figure S2.
Unsupervised analysis was performed by means of principal

components analysis (PCA) (Figure 1), with the PCA scores
plot gives an unbiased visualization of the clustering of
individuals in the multivariate metabolic space. Clear clustering
behavior is shown in the first two principal components which
explain 48% of the expressed metabolic variance. This
unsupervised model provides strong evidence of significant
metabolic differences between the classes. The loadings plot
gives an indication of the most significant metabolic variables
separating the two classes with high VLDL class parameters
and a high Apolipoprotein B100/A1 ratio being apparent in

the SARS-CoV-2 positive patients together with much lower
levels of major HDL class particles and components.
PCA is a useful method to illustrate clustering trends based

on systematic variation patterns, and the group-specific PCA
scores distribution (Figure 1A) indicates that these data would
be well served by further supervised analysis. Class-specific
variable importance lists, however, are more directly obtained
from supervised methods including OPLS-DA, as detailed
below.

Integrative Lipoprotein, Glycoprotein, and Biogenic
Amine Modeling

In order to construct a multiplatform window on observed
COVID-19 disease effects the total sample set was divided into
subsets for OPLS-DA model training and validation. The
training set was constructed using seven individuals who tested
SARS-CoV-2 RNA positive and eight age and sex matched
healthy controls (Table S4). The primary purpose of the
analysis was to determine whether a characteristic set of SARS-
CoV-2 infection/COVID-19 disease metabolic signatures

Figure 2. OPLS-DA model plots. (A) OPLS-DA scores plot showing training and validation set samples. Point labels a and b in panel A are from
separate recovered COVID-19 disease patients who initially tested SARS-CoV-2 RNA positive, but later tested SARS-CoV-2 RNA negative at time
of blood sampling for study, individual c was a mildly symptomatic initially included as a healthy control, who was unaware that they had suffered
the disease and was subsequently tested and found to be antibody positive for SARS-CoV-2 (IgA and IgG positive) the original diagnosis having
being suspected based on the NMR metabolic data. (B) Projections of samples collected at three time points from a recovered individual labeled
with b in panel A projecting a reverse-phenoconversion from positive to negative during their recovery period. (C) Variable importance eruption
plot combining predictive component loadings (ppred), univariate effect sizes (Cliff’s delta) and p value from statistical group comparison (color
scale). Point labels indicate FDR-adjusted p value < 0.05. Key: Cyth, cystathionine; Etn, ethanolamine; GLC, glucose; Glyc A, α-1-acid
glycoprotein signal A; Glyc B, α-1-acid glycoprotein signal B; Kyn, kynurenine; 1-MHis, 1-methylhistidine; 3-MHis, 3-methylhistine. Upper case 4
letter code indicate lipoproteins with 2 character prefix indicating particle types: HD, high density lipoprotein with density subfractions 1 to 4
(indicated by H1 to H4); ID, intermediate density lipoprotein; LD, low-density lipoprotein with subfractions 1 to 3 (indicated by L1 to L3); VL,
very low-density lipoprotein with subfractions 1 to 4 (V1 to V5); TP, total plasma. Lipoprotein suffixes represent analytes: A1, Apolipoprotein A1;
A2, Apolipoprotein A2; CH, cholesterol; FC, free cholesterol; PL, phospholipids; TG, triglycerides; PN, particle number.
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exists, and further, to establish any resultant metabolic
directionality when comparing with healthy controls? The
purpose of the validation set was to determine the predictive
capacity of the biomarker model. This is explicitly not to create
and validate a diagnostic phenoconversion test, but to give an
indication on the broad feasibility of such a test irrespective of
the stage or severity of the disease. Severity prediction can only
be addressed when comprehensive longitudinal patient
sampling data are available, which was only partially the case
in the present study. Indeed, it is a weakness of most current
studies into SARS-CoV-2 infection that early time-point or
asymptomatic and low severity cases are almost by definition
absent. Such prediction questions can only be asked in
prospective studies that will be rare for an emergent virus such
as SARS-CoV-2.
The OPLS-DA model scores, including validation sample

scores projections (Figure 2A) indicate large systematic
metabolic differences in plasma of SARS-CoV-2 positive
when compared with healthy controls. Predictions of the
validation samples of disease active patients were 100%
accurate, resulting in model sensitivity, specificity, positive
and negative predictive values of 1. Whereas the aim of this
work was not to propose a metabolic test of SARS-CoV-2
positivity the models and data shown here indicate that there is
a strong possibility of developing such a test with further
samples and method validation. Note that the patient data
points labeled “a” and “b” in Figure 2A are from two recovered
COVID-19 patients who previously tested SARS-CoV-2 RNA
positive, however were later tested SARS-CoV-2 RNA negative
at time of blood sampling for metabolic phenotyping analysis.
Furthermore, an additional individual labeled “c” in Figure 2A
was initially considered as a healthy control but was
subsequently found to be IgA and IgG antibody positive for
SARS-CoV-2. This gives further credence to the idea that this
approach could be developed further into a diagnostic test.
Figure 2B illustrates the scores trajectory of plasma samples
collected from an individual in COVID-19 disease recovery
phase (symptomless), with the last time point (t3) being
collected 8 weeks post first appearance of symptoms.
The integrated NMR and mass spectral data modeling

incorporated the 112 parameter lipoprotein subclass set,
together with the separately measured α-1-acid glycoprotein
GlycA and GlycB signal measurements, the full amino acid
data, plus selected metabolic ratios and are displayed in a novel
visualization that we term an “Eruption Plot”, a multivariate
modification of the well-known “Volcano Plot” (typically
plotting fold change of a parameter against its p-value), in
Figure 2C. In an Eruption plot, the abscissa is the comparative
effect size (Cliff’s delta) of the differences between the healthy
control and SARS-CoV-2 positives plotted against the OPLS
predictive component absolute loadings (ordinate), color-
coded by the false discovery rate (FDR)-corrected absolute
log-transformed p-value. This is a new type of multivariate
mapping that we have introduced to encapsulate the high
information density that is present in the combined multi-
spectral data set.
The component with the strongest OPLS-DA model

influence for the SARS-CoV-2 positive group was the
inflammation marker α-1-acid glycoprotein signal A (Glyc A,
p = 2.0 × 10−8), with a Cliff’s delta (Cd) of 0.94, indicating
group-cohesive elevation in COVID-19 when compared to
healthy controls. Further compounds found statistically
significant and elevated in the SARS-CoV-2 positive group

include (in rank order) α-1-acid glycoprotein signal B (Glyc B:
Cd = 0.9, p = 6.6 × 10−8), glutamic acid (Cd = 0.8, p = 4.2 ×
10−7), aspartic acid (Cd = 0.8, p = 6.4 × 10−7), glucose (Cd =
0.7, p = 2.1 × 10−5), taurine (Cd = 0.7, p = 4.2 × 10−5),
kynurenine (Cd = 0.6, p = 2.3 × 10−4), cystathionine (Cd =
0.6, p = 2.6 × 10−4), ethanolamine (Cd = 0.6, p = 4.6 × 10−4),
phenylalanine (Cd = 0.5, p = 6.4 × 10−3), and the triglyceride
fraction in the main high-density lipoprotein (HDL) class and
subclasses HDL 1−3 (range Cd = 0.5−0.7, range p = 2.2 ×
10−4 to 9.5 × 10−6), as well as in low-density lipoprotein
(LDL) and its subclasses 1−5 (range of Cd = 0.8−0.5, range of
p = 8.0 × 10−9 to 4.4 × 10−4) and very low-density lipoprotein
(VLDL) subclass 4 and 5 (both Cd = 0.7 and p = 1.1 × 10−6).
Other compounds found elevated in the SARS-CoV-2 positive
group include free cholesterol in very low density lipoprotein
(VLDL) subclasses 2−4 (range Cd = 0.4−0.7, range p = 0.032
to 2.5 × 10−5), VLDL 4 cholesterol fraction (Cd = 0.0.47, p =
1.3 × 10−2), and phospholipids (Cd = 0.7, p = 6.7 × 10−5),
VLDL and intermediate density lipoprotein (IDL) particle
number (range Cd = 0.5−0.6, range p = 4.3 × 10−3 to 5.8 ×
10−4) and apolipoprotein AB in VLDL and IDL (Cd = 0.6 and
0.5, p = 5.9 × 10−4 and 5 × 10−3, respectively), the
phospholipid fraction in VLDL subclass 4 (Cd = 0.7, p = 6.8
× 10−5) and the ratio of apolipoproteins B-100 to A1 (ABA1,
Cd = 0.6, p = 1.3 × 10−3).
Biogenic amines decreased in the SARS-CoV-2 positive

group when compared to healthy controls include (in rank
order) the aromatic amino acids histidine (Cd = −0.8, p = 6.6
× 10−7) and tryptophan (Cd = −0.7, p = 2.3 × 10−5), as well as
3-methylhistidine (Cd = 0.5, p = 7.8 × 10−3). Lipoprotein
compounds found decreased in SARS-CoV-2 positive include
apolipoprotein A1 and A2 in total plasma, with comparable
variable importance (Cd = −0.8 to −0.9, p = 4.1 × 10−9 to 1.2
× 10−10). Apolipoprotein A1 and A2 were also under expressed
in the main lipoprotein class HDL and subclass HDL 4 (range
Cd = −0.4 to −0.91, range p = 3.5 × 10−3 to 1.1 × 10−10).
Apolipoprotein A1 (not A2) showed a significantly reduced
concentration in HDL-3 (Cd = −0.4 and p = 3.5 × 10−3).
Lower concentrations in SARS-CoV-2 positives were also
found for total plasma cholesterol, this trend was reflected in
HDL main and subclass 4, as well as in LDL main and all
subclasses 1−6 (range Cd = −0.3 to −0.6); however, only the
main and subclass 1−5 were found to be statistically significant
(3.0 × 10−2 to 4.7 × 10−4). Other parameters found decreased
in the SARS-CoV-2 positive group include free cholesterol
(FC) in main class HDL and its subclasses 1, 3, and 4 (range
Cd = −0.6 to −0.8, range p = 6.8 × 10−5 to 1.1 × 10−8), in
LDL (Cd = −0.5, p = 1.1 × 10−3), the phospholipid fraction in
HDL and its subclass 3 and 4 (range Cd = −0.4 to −0.8, p =
1.1 × 10−5 to 4.0 × 10−7) as well as in LDL (Cd = −0.5, p =
2.3 × 10−2).

Univariate Functional Markers and Ratios

We measured plasma glucose together with α-1-acid
glycoprotein levels by NMR spectroscopy together with
three amino acid ratios (Table 1) from the mass spectrometry
data that have previously been used for diagnostic purposes.
These including the kynurenine/tryptophan ratio which is used
as a marker for multiple acute and chronic conditions.35 The
Fischer’s ratio of branched chain to aromatic amino acids is a
strong indicator of liver dysfunction36 and the glutamine to
glutamate ratio which is related to skeletal muscle energy
metabolism37 and is also associated with liver damage and
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septic shock.38 Glucose is significantly raised in SARS-CoV-2
positives consistent with a diabetic or prediabetic trait.39 The
glutamine/glutamate ratio can be influenced by high levels of
plasma alpha-glutathione S-transferase which is commonly
found in liver failure but is also an indication of skeletal muscle
catabolism which is not inconsistent with the hospitalized state
of the patients.40 The signals from the α-1-acid glycoproteins
are all raised indicating acute inflammation.41 The relative
intensities of the Glyc A and Glyc B signals were not
significantly different between controls and SARS-CoV-2
positive patients. A detailed discussion of these parameters in
relation to the systemic model of the disease follows below.
Metabolic Features of Positive SARS-CoV-2 Infection

The metabolic characteristics of the disease can be inferred and
interpreted from consideration of the Eruption plot loadings in
Figure 2C together with the variable influence on projection
(VIP) list shown in Table S5. These can be gathered into 4
different disease classifications as (a) acute inflammatory
response, (b) liver dysfunction, (c) a prediabetic/diabetes like
signature, and (d) a cardiovascular risk signature. This is based
on the integrated and complementary information windows
presented by the complementary NMR and MS technologies
that help constrain the biological interpretations. Many of
these features are consistent with previously described
complications of the severe acute respiratory syndrome
coronavirus 1 (SARS-CoV-1 virus) outbreak in 200342,43 as
well as newly emerging information on SARS-CoV-2.4,5,9

Inflammatory Markers

Consistent with the univariate statistical observations in Table
1 the α-1-acid glycoprotein A (Glyc A) and α-1-acid
glycoprotein B (Glyc B) signals are significantly increased in
the patients who tested positive for SARS-Cov-2 emerging as
the strongest differentiating marker in the multivariate model
(Table S5 VIP). The N-acetyl signals of α-1-acid glycoprotein
(an acute phase reactive protein) were originally identified as
NMR detectable biomarkers for acute systemic inflamma-
tion.41 This has been subsequently demonstrated and explored
by other groups44 and is the subject of a recent comprehensive
review.45 Multiple inflammatory associations and correlations
between Glyc A and blood triglycerides and lipids, branched
chain amino acids and between Glyc A, and Glyc B and insulin
resistance, prediction of future glycemia, associations of Glyc A
with higher IL-6 and C-reactive protein and future develop-
ment of Type 2 Diabetes mellitus have been observed.46

Elevation of the Glyc A signal has shown to be associated with
cardiovascular disease and with severity in several inflamma-
tory diseases.45,47 In addition, we observed significantly
reduced circulating tryptophan levels and elevated kynurenine
levels which was also noted in previous SARS-CoV-2/COVID-
19 studies.28,48

Our data indicate that the kynurenine/tryptophan ratio is
significantly increased in SARS-CoV-2 positives. This was
recently interpreted in relation to renal insufficiency in patients
infected with SARS-CoV-2 but the ratio is disturbed in
multiple diseases such as inflammatory lung disease,49 kidney
disease, HIV and AIDS50 and sepsis.51 Kynurenine/tryptophan
is a general measure of indole 2,3-dioxygenase (IDO) which
has an immunoregulatory role and is induced by interferon-
gamma in response to viral infection.50 IDO is responsible for
the conversion of tryptophan to kynurenine and is a negative
regulator of inflammation and this plays a significant role in
limiting lung inflammation, but this is clearly perturbed given
the elevated levels of Glyc A.

Markers of Liver Dysfunction

In the present study a series of changes in amino acid levels
were observed. Specifically, changes in aromatic amino acids
(AAA) phenylalanine and tyrosine between healthy controls
and patients positive with SARS-CoV-2 infection were
detected. The Fischer’s ratio52 has been related to liver
dysfunction function and is here shown to be significantly
decreased with SARS-CoV-2 infection. In the present study,
the change in Fischer’s ratio is driven by an increase in AAA,
reflective of a catabolic stimulus as seen in hepatic fibrosis53

and eventual hepatic failure.36 Increases in circulating phenyl-
alanine, tyrosine and tryptophan have been reported in patients
with hepatic fibrosis,53 acute hepatic failure31 and hepatic
encephalopathy.54,55 In such cases, the liver fails to catabolize
large amounts of aromatic amino acids released from
endogenous protein, lean body-mass, and thus accumulate in
the circulation.52 Increased levels of circulating tyrosine and
phenylalanine have also been attributed to repression of
tyrosine aminotransferase during states of insulin resistance.56

Other alterations suggestive of SARS-CoV-2-induced
hepatic dysfunction and damage include elevated taurine and
ethanolamine (Figure 2C). Increased levels of taurine in
plasma and urine have previously been reported as markers of
acute hepatic failure.57 In addition, significantly higher levels of
glutamic acid and lower levels of glutamine were of detected in
the present patient cohort, which culminated a significantly

Table 1. Diagnostic Indices Relating to Amino Acid Ratios
(Mass Spectrometry), α-1-Acid Glycoproteins Glyc A and
Glyc B (NMR Spin Echo Data), and Glucose (Single-Pulse
NMR Data) (Shown is Group Median [Range])

healthy control
(n = 25)

SARS-CoV-2
positive (n = 17) p-valuea

kynurenine/
tryptophan ratio

7.0 × 10−3 4.0 × 10−3 2.49 × 10−4

[1.9 × 10−3 to
2.0 × 10−2]

[2.0 × 10−3 to
6.7 × 10−3]

Fischer’s ratiob 2.82 3.29 0.01
[1.30−4.07] [2.79−4.18]

glutamine/
glutamate ratio

7.87 30.18 1.82 × 10−6

[3.08−40.58] [14.04−55.64]
Glyc A (rel.
intensity)

1.99 × 105 3.3 × 105 2.13 × 10−7

[1.66 × 105] [1.96 × 105 to
4.02 × 105]

Glyc B (rel.
intensity)

3.31 × 105 5.19 × 105 2.74 × 10−7

[1.90 × 105 to
4.62 × 105]

[3.57 × 105 to
7.49 × 105]

Glyc A + Glyc B
(rel. intensity)

2.36 × 105 3.86 × 105 2.93 × 10−9

[1.86 × 105 to
3.14 × 105]

[2.41 × 105 to
4.77 × 105]

Glyc A/Glyc B ratio 5.95 6.05 0.69
[4.89−9.38] [4.30−8.91]

glucose (mmol/L) 5.70 7.40 2.86 × 10−4

[3.90−8.10] [4.40−11.00]
aStatistical group comparisons of SARS-CoV-2 patients versus
controls were performed with the Kruskal−Wallis rank sum test.
bFischer’s ratio = (valine + leucine + isoleucine)/(phenylalanine +
tyrosine).
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reduced glutamine/glutamate ratio. Glutamate and glutamine
are involved in energy metabolism and have been associated
with cardiometabolic diseases, with glutamine levels being
related with insulin resistance and an increased risk of Type-2
diabetes.58 Low glutamine levels have also potentially related
to abnormal catabolism of cysteine, a consequence of increased
hepatic glutathione biosynthesis and increase cysteine
catabolism in skeletal muscle, which may be triggered by IL-
6 or related cytokines.59 Reduced glutamine is also indicative
of skeletal muscle catabolism via glutamine to glutamate
conversion and then further transamination to 2-oxoglutarate
that is used as an anaplerotic energy source in the citric acid
cycle. Low histidine and 3-methylhistidine concentrations may
support skeletal muscle breakdown, further features of a
catabolic state associated with hyperglucagonemia present in
liver cirrhosis.60 This supports previous literature that has
shown that liver dysfunction is common in SARS-CoV-2
positive patients even if respiratory failure is not severe. In one
report up to 77% of patients demonstrated some level of
impaired liver function.5 In another recent study of metabolite
changes related with SARS-CoV-2 infection, carbamoyl
phosphatase was shown to be reduced in patients who tested
positive for the virus. Carbamoyl phosphate is synthesized
from free amino donors by carbamoyl phosphate synthetase I
(CPSI) in mitochondria in liver cells and participates in the
urea cycle to remove excess ammonia and produce urea. The
reduction in carbamoyl phosphate was hypothesized to
indicate liver damage.48

Diabetic and Cardiovascular Risk Signatures of
SARS-CoV-2 Positivity

The dyslipidemia profile of individuals with diabetes feature
reduced HDL cholesterol, a predominance of LDL particles
and elevated triglyceride levels. All of which are seen in the this
set of patients who tested positive for SARS-CoV-2. Each of
these lipoprotein features are also associated with an increased
risk of cardiovascular disease.61 It should also be noted VLDL
tends to be higher in diabetics due to increased hepatic
secretion and decreased clearance, again VLDL subfractions
are significantly higher in the SARS-CoV-2 positive patients
compared to the healthy controls.61 The Apolipoprotein-
B100/Apoliprotein-A1 ratio is used clinically to assess
cardiovascular disease risk. The higher ratios observed in
SARS-CoV-2 positives indicate an increased risk of cardiovas-
cular disease. From the eruption plot TPA1 (Apolipoprotein
A1) is higher in the healthy controls, and therefore relatively
reduced in the disease state and Apolipoprotein A1 is generally
associated with increased risk of cardiovascular disease.
We observed the following parameters were significantly

lower in SARS-CoV-2 positives than controls (Figure 2C):
Plasma Apolipoprotein A1 and A2, HDL Apolipoprotein A1
and A2, HDL free cholesterol, HDL 1 all parameters, HDL2
Apolipoprotein A1 plus most HDL3 and HDL4 parameters.
Also, LDL particle number, LDL1 and LDL3 cholesterol and
free cholesterol as well as LDL2 free cholesterol, phospholipid
and Apolipoprotein B were lower than controls. We also
observed a series of parameters that are significantly higher in

Figure 3. Hierarchically clustered correlation heatmap of the complete IVDr lipoprotein panel, α-1-acid glycoproteins, glucose, amino acid data,
and ratios for COVID-19 positive patient samples. Key: AABA, α-aminobutyric acid; BAIBA, β-aminoisobutyric acid; Cirtrul., citrulline; Ctn,
cysthathionine; Etn, ethanolamine; GLC, glucose; GlycA, N-acetyl signals of α-1-acid glycoprotein signal A; GlycB, N-acetyl signal of α-1-acid
glycoprotein B; Kyn, kynurenine; 1-MHis, 1-methylhistidine; 3-MHis, 3-methylhistidine; Sarcos., sarcosine; TPAB/TPA1/TPA2, total plasma
lipoprotein B/A1/A2; TPTG/TPCH, total plasma triglycerides/cholesterol.
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the SARS-CoV-2 positives than controls, particularly the
Apolipoprotein B100/Apolipoprotein A1 ratio, LDL1 trigly-
cerides, VLDL particle number, VLDL Apolipoprotein B,
VLDL2, 3, 4, and 5 free cholesterol, VLDL4 and 5
triglycerides. Taken collectively, this pattern is consistent
with overproduction and diminished clearance of VLDL,
implicating insulin resistance (consistent with elevated plasma
glucose), possibly direct liver damage (consistent with amino
acid data). Moreover, the pattern is also consistent with recent
observations on the NMR measured lipoprotein and metabolic
signatures of carotid atherosclerosis and cardiovascular disease
and in particular patterns associated with coronary artery
calcium levels and carotid intima-media thickness.62 It is of
note that in a 12-year follow-up study on patients who had
recovered from the original SARS-CoV-1 infection that 68%
had hyperlipidemia and 44% had cardiovascular abnormalities
and 60% had disorders of glucose metabolism disorders. These
patients had elevated serum concentrations of free fatty acids,
lysophosphatidylcholine, lysophosphatidylethanolamine and
phosphatidylglycerol controls.42 Given that the SARS-CoV-2
virus is structurally similar to the original SARS-CoV-1 and
appears to have common systemic effects with the new disease
it is possible that there are also nonreversible effects that
should be investigated in follow-up studies on “recovered”
COVID-19 disease patients.
Further insights into the systemic effect of COVID-19 on

the relationships between the multiple plasma components are
obtained by consideration of the Hierarchically clustered
correlation heatmap (Figure 3). The cluster labeled 1 in Figure
3 correlates liver function related metabolites to the ornithine
cycle and to glutathione synthesis from serine and glycine.
Cluster 2 relates to muscle metabolism, and cluster 3 shows a
mixed pattern of diabetes including glucose and alanine (a
gluconeogenic amino acid) plus muscle metabolism (proline
and hydroxyproline). Clusters 4, 5, and 6 are from highly
correlated groups of amino acids that are disordered in liver
failure and diabetes. Cluster 7 anticorrelates the higher α-1-
acid glycoprotein signals the inflammatory COVID-19 disease
patients with plasma Apolipoprotein A1 and A2 consistent
with their High ApoB100/A1 cardiovascular risk marker.
Clusters 8 and 9 also relate to disordered amino acid
relationship in liver dysfunction and, interestingly, the
lactate/pyruvate ratio, a marker of tissue oxygenation
(expected to be elevated in severe respiratory dysfunction)
correlating with citrulline and ornithine potentially pointing to
an underlying perfusion basis for the liver injury. Cluster 10
relates the total plasma Apolipoprotein B100/A1 ratio to total
plasma cholesterol and triglycerides and negatively correlates
the total plasma cholesterol with the kynurenine/tryptophan
ratio and the α-1-acid glycoprotein inflammatory markers.
These metabolic clusters and features emphasize the deep
connectivity of liver and energy metabolism, with broader
diabetic and coronary heart disease risk biomarkers. There are
marked similarities with long-term metabolic disorders
previously identified in “recovered” SARS-CoV-1 patients.63

Given that SARS-CoV-2 virus has already affected vastly
greater numbers of the human population than SARS-CoV-1,
follow up studies to assess the long-term effects of the SARS-
CoV-2 infection and appraisal of future healthcare burdens
imposed by exposure to the novel virus will be essential. The
mechanistic interconnections await larger scale investigations
that are currently underway in our laboratories and beyond.
Other groups have also reported complex neurological

symptoms and complications of SARS-CoV-2 infections both
in acute and longer term cases7,64 but we did not observe these
clinical presentations in our patient set, but it will be important
to assess these and other long-term effects in follow-up studies
designed to assess the full recovery of COVID-19 patients or in
some cases their long-term disease burdens or altered health
risks.

■ CONCLUSIONS
COVID-19 can be considered to be an emergent dynamic
“Mosaic Disease”, which is made up of a large number of
scattered biochemical components covering many networks
and organ systems. The challenge in uncovering the mosaic
picture is to find all the pieces using a combination of
technologies including genomic, proteomic, metabolic, and
immunologic modalities and to assemble these into a coherent
pattern that describes the etiology, severity, and long-term
outcomes of the patient journey. In this relatively small study
on COVID-19 patients, we have used an array of technologies
to probe the profound metabolic alterations that accompany
the disease, but clinical data interpretation should remain
cautious until larger studies, cross-population, and multiomic
cross-validations are performed. However, the metabolic
models and markers detected in this study are unusually
strong and highly distinctive of a multisystem involvement,
consistent with the reported extensive microvascular effects
that would be expected to compromise multiple organ
functions. Taken collectively, our data present a complex
pattern of disturbance of systemic metabolism caused by
SARS-CoV-2 viral infection associated with multiple organ-
specific changes that are not simply related to the primary
respiratory symptoms. These studies indicate the potential
importance of broader clinical chemical and chemical
pathology testing for prospective hospitalization and existing
hospitalized COVID-19 patients to identify those who might
have newly acquired metabolic diseases of the type described
here. Such problems would inevitably complicate the patients’
recovery and should be addressed and managed as early as
possible to help avoid long-term complications of the type that
are have been recently described as “long COVID disease”.
The metabolic disturbances described appear to be independ-
ent of the severity of respiratory symptoms or the exact
sampling time-point of the active disease state. Given the
limited number of cases described, further work is required to
validate the predictive models to a level that could lead to new
phenoconversion tests for detection of the active disease
process and possibly provide early predictors of individual
severity that could be of value in the management of
hospitalized patients and the assessment of long-term recovery.
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