1,646 research outputs found

    The Fractal Dimension of SAT Formulas

    Get PDF
    Modern SAT solvers have experienced a remarkable progress on solving industrial instances. Most of the techniques have been developed after an intensive experimental testing process. Recently, there have been some attempts to analyze the structure of these formulas in terms of complex networks, with the long-term aim of explaining the success of these SAT solving techniques, and possibly improving them. We study the fractal dimension of SAT formulas, and show that most industrial families of formulas are self-similar, with a small fractal dimension. We also show that this dimension is not affected by the addition of learnt clauses. We explore how the dimension of a formula, together with other graph properties can be used to characterize SAT instances. Finally, we give empirical evidence that these graph properties can be used in state-of-the-art portfolios.Comment: 20 pages, 11 Postscript figure

    Holography and Variable Cosmological Constant

    Full text link
    An effective local quantum field theory with UV and IR cutoffs correlated in accordance with holographic entropy bounds is capable of rendering the cosmological constant (CC) stable against quantum corrections. By setting an IR cutoff to length scales relevant to cosmology, one easily obtains the currently observed rho_Lambda ~ 10^{-47} GeV^4, thus alleviating the CC problem. It is argued that scaling behavior of the CC in these scenarios implies an interaction of the CC with matter sector or a time-dependent gravitational constant, to accommodate the observational data.Comment: 7 pages, final version accepted by PR

    On the Moat-Penumbra Relation

    Get PDF
    Proper motions in a sunspot group with a delta-configuration and close to the solar disc center have been studied by employing local correlation tracking techniques. The analysis is based on more than one hour time series of G-band images. Radial outflows with a mean speed of 0.67 km s^{-1} have been detected around the spots, the well-known sunspots moats. However, these outflows are not found in those umbral core sides without penumbra. Moreover, moat flows are only found in those sides of penumbrae located in the direction marked by the penumbral filaments. Penumbral sides perpendicular to them show no moat flow. These results strongly suggest a relation between the moat flow and the well-known, filament aligned, Evershed flow. The standard picture of a moat flow originated from a blocking of the upward propagation of heat is commented in some detail.Comment: 4 pages, 4 figures, To appear in ApJ Letter

    Gold-Based Nanoparticles on Amino-Functionalized Mesoporous Silica Supports as Nanozymes for Glucose Oxidation

    Get PDF
    The transformation of glucose represents a topic of great interest at different levels. In the first place, glucose is currently conceived as a green feedstock for the sustainable production of chemicals. Secondly, the depletion of glucose at the cellular level is currently envisioned as a promising strategy to treat and alter the erratic metabolism of tumoral cells. The use of natural enzymes offers multiple advantages in terms of specificity towards the glucose substrate but may lack sufficient robustness and recyclability beyond the optimal operating conditions of these natural systems. In the present work, we have evaluated the potential use of an inorganic based nanohybrid containing gold nanoparticles supported onto ordered mesoporous supports. We have performed different assays that corroborate the enzyme-mimicking response of these inorganic surrogates towards the selective conversion of glucose into gluconic acid and hydrogen peroxide. Moreover, we conclude that these enzyme-like mimicking surrogates can operate at different pH ranges and under mild reaction conditions, can be recycled multiple times and maintain excellent catalytic response in comparison with other gold-based catalysts

    Revitalizing public spaces: experiences form three renewed neighbourhoods

    Get PDF
    Ponència presentada a: Session 8: Post-ocupación / Post-occupancy: buildings and citie

    Thermodynamics of viscous dark energy in an RSII braneworld

    Full text link
    We show that for an RSII braneworld filled with interacting viscous dark energy and dark matter, one can always rewrite the Friedmann equation in the form of the first law of thermodynamics, dE=ThdSh+WdVdE=T_hdS_h+WdV, at apparent horizon. In addition, the generalized second law of thermodynamics can fulfilled in a region enclosed by the apparent horizon on the brane for both constant and time variable 5-dynamical Newton's constant G5G_5. These results hold regardless of the specific form of the dark energy. Our study further support that in an accelerating universe with spatial curvature, the apparent horizon is a physical boundary from the thermodynamical point of view.Comment: 11 page

    Short Proofs for the Determinant Identities

    Get PDF

    Resummed Quantum Gravity

    Get PDF
    We present the current status of the a new approach to quantum general relativity based on the exact resummation of its perturbative series as that series was formulated by Feynman. We show that the resummed theory is UV finite and we present some phenomenological applications as well.Comment: 4 pages, 1 figure; presented at ICHEP0

    Towards Verifying Nonlinear Integer Arithmetic

    Full text link
    We eliminate a key roadblock to efficient verification of nonlinear integer arithmetic using CDCL SAT solvers, by showing how to construct short resolution proofs for many properties of the most widely used multiplier circuits. Such short proofs were conjectured not to exist. More precisely, we give n^{O(1)} size regular resolution proofs for arbitrary degree 2 identities on array, diagonal, and Booth multipliers and quasipolynomial- n^{O(\log n)} size proofs for these identities on Wallace tree multipliers.Comment: Expanded and simplified with improved result
    • …
    corecore