19 research outputs found

    Direct Irradiation of Phenol and Para-Substituted Phenols with a Laser Pulse (266 nm) in Homogeneous and Micro-heterogeneous Media. A Time-Resolved Spectroscopy Study

    Get PDF
    Direct irradiation of para-substituted phenols under N2 atmosphere in homogeneous (cyclohexane, acetonitrile, and methanol) and micellar (SDS) solution was investigated by means of time-resolved spectroscopy. After a laser pulse (266 nm), two transient species were formed, viz. the para-substituted phenol radical-cations and the corresponding phenoxy radicals. The radical-cations showed a broad absorption band located between 390 and 460 nm, while the phenoxy radicals showed two characteristic bands centered at 320 nm and 400-410 nm. The deprotonation rate constant of radical-cations (kH) of 105 s-1 and the reaction rate constant of the phenoxy radicals (kR) in the order of 109-1010 M-1·s-1 have been derived. The kH rate constants gave good linear Hammett correlation with positive slope indicating that electron-withdrawing substituents enhance the radical-cation acidity. The binding constants (Kb) of the para-substituted phenols with the surfactant were also measured, and NOESY experiments showed that phenols were located in the hydrophobic core of the micelle. Finally, computational calculations provided the predicted absorption spectra of the transients and nice linear correlations were obtained between the theoretical and experimental energy of the lower absorption band of these species

    Substituent and Surfactant Effects on the Photochemical Reaction of Some Aryl Benzoates in Micellar Green Environment<sup>†</sup>

    Get PDF
    In this study, we carried out preparative and mechanistic studies on the photochemical reaction of a series of p-substituted phenyl benzoates in confined and sustainable micellar environment. The aim of this work is mainly focused to show whether the nature of the surfactant (ionic or nonionic) leads to noticeable selectivity in the photoproduct formation and whether the electronic effects of the substituents affect the chemical yields and the rate of formation of the 5-substituted-2-hydroxybenzophenone derivatives. Application of the Hammett linear free energy relationship (LFER) on the rate of formation of benzophenone derivatives, on the lower energy band of the UV-visible absorption spectra of the aryl benzoates and 5-substituted-2-hydroxybenzophenone derivatives allows a satisfactory quantification of the substituent effects. Furthermore, UV-visible and 2D-NMR (NOESY) spectroscopies have been employed to measure the binding constant Kb and the location of the aryl benzoates within the hydrophobic core of the micelle. Finally, TD-DFT calculations have been carried out to estimate the energies of the absorption bands of p-substituted phenyl benzoates and 5-substituted-2-hydroxybenzophenone derivatives providing good linear correlation with those values measured experimentally.Fil: Siano, Gastón. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones en Hidratos de Carbono. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones en Hidratos de Carbono; ArgentinaFil: Crespi, Stefano. University of Groningen; Países BajosFil: Bonesi, Sergio Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones en Hidratos de Carbono. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones en Hidratos de Carbono; Argentin

    The photophysics of nitrocarbazoles studied by using spectroscopic, photoacoustic and luminescence techniques

    Get PDF
    The photophysical behaviour of 1-nitrocarbazol and 3-nitrocarbazol in different organic solvents has been studied by using spectroscopic, luminescence and photoacoustic techniques. Absorption spectra and triplet state transient spectra were recorded and formation quantum yields and lifetimes determined. Phosphorescence emission at 77 K and laser induced luminescence in acetonitrile solution at 298 K for the nitrocarbazoles were studied. Results are discussed in terms of the optimized structure of 1-nitrocarbazole and 3-nitrocarbazole and compared with that of carbazole. The nitro group attached to the carbazole moiety induces important changes in the photophysical behavior of those compounds

    The photophysics of nitrocarbazoles studied by using spectroscopic, photoacoustic and luminescence techniques

    Get PDF
    The photophysical behaviour of 1-nitrocarbazol and 3-nitrocarbazol in different organic solvents has been studied by using spectroscopic, luminescence and photoacoustic techniques. Absorption spectra and triplet state transient spectra were recorded and formation quantum yields and lifetimes determined. Phosphorescence emission at 77 K and laser induced luminescence in acetonitrile solution at 298 K for the nitrocarbazoles were studied. Results are discussed in terms of the optimized structure of 1 -nitrocarbazole and 3-nitrocarbazole and compared with that of carbazole. The nitro group attached to the carbazole moiety induces important changes in the photophysical behavior of those compounds.Facultad de Ciencias Exacta

    The photophysics of nitrocarbazoles studied by using spectroscopic, photoacoustic and luminescence techniques

    Get PDF
    The photophysical behaviour of 1-nitrocarbazol and 3-nitrocarbazol in different organic solvents has been studied by using spectroscopic, luminescence and photoacoustic techniques. Absorption spectra and triplet state transient spectra were recorded and formation quantum yields and lifetimes determined. Phosphorescence emission at 77 K and laser induced luminescence in acetonitrile solution at 298 K for the nitrocarbazoles were studied. Results are discussed in terms of the optimized structure of 1 -nitrocarbazole and 3-nitrocarbazole and compared with that of carbazole. The nitro group attached to the carbazole moiety induces important changes in the photophysical behavior of those compounds.Facultad de Ciencias Exacta

    The photophysics of nitrocarbazoles studied by using spectroscopic, photoacoustic and luminescence techniques

    Get PDF
    The photophysical behaviour of 1-nitrocarbazol and 3-nitrocarbazol in different organic solvents has been studied by using spectroscopic, luminescence and photoacoustic techniques. Absorption spectra and triplet state transient spectra were recorded and formation quantum yields and lifetimes determined. Phosphorescence emission at 77 K and laser induced luminescence in acetonitrile solution at 298 K for the nitrocarbazoles were studied. Results are discussed in terms of the optimized structure of 1 -nitrocarbazole and 3-nitrocarbazole and compared with that of carbazole. The nitro group attached to the carbazole moiety induces important changes in the photophysical behavior of those compounds.Facultad de Ciencias Exacta

    Mono- and Bis-Alkylated Lumazine Sensitizers: Synthetic, Molecular Orbital Theory, Nucleophilic Index and Photochemical Studies

    Get PDF
    Mono- and bis-decylated lumazines have been synthesized and characterized. Namely, mono-decyl chain [1-decylpteridine-2,4(1,3H)-dione] 6a and bis-decyl chain [1,3-didecylpteridine-2,4(1,3H)-dione] 7a conjugates were synthesized by nucleophilic substitution (SN 2) reactions of lumazine with 1-iododecane in N,N-dimethylformamide (DMF) solvent. Decyl chain coupling occurred at the N1 site and then the N3 site in a sequential manner, without DMF condensation. Molecular orbital (MO) calculations show a p-orbital at N1 but not N3 , which along with a nucleophilicity parameter (N) analysis predict alkylation at N1 in lumazine. Only after the alkylation at N1 in 6a, does a p-orbital on N3 emerge thereby reacting with a second equivalent of 1-iododecane to reach the dialkylated product 7a. Data from NMR (1 H, 13 C, HSQC, HMBC), HPLC, TLC, UV-vis, fluorescence and density functional theory (DFT) provide evidence for the existence of mono-decyl chain 6a and bis-decyl chain 7a. These results differ to pterin O-alkylations (kinetic control), where N-alkylation of lumazine is preferred and then to dialkylation (thermodynamic control), with an avoidance of DMF solvent condensation. These findings add to the list of alkylation strategies for increasing sensitizer lipophilicity for use in photodynamic therapy.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicada

    Effect of Protic Cosolvents on the Photooxygenation of Diethyl Sulfide

    No full text

    Photohomolysis and Photoheterolysis in Aryl Sulfonates and Aryl Phosphates

    No full text
    The photochemical behaviour of selected aryl sulfonates and phosphates (ArOX) in polar and nonpolar media has been investigated by laser flash photolysis (LFP) experiments. Two main pathways have been identified, namely the photohomolysis of the ArO−X bond or the photoheterolysis of the Ar−OX bond depending on the nature of the leaving group (OX) and on the nature of the substituents on the aromatic ring. In nonpolar solvents the esters are quite photostable due to an efficient triplet deactivation. In polar solvents, the homolytic fragmentation of the ArO−S bond from the exited singlets was found in aryl sulfonates bearing moderately electron-donating groups as well as electron-withdrawing groups. In electron-rich aryl phosphates and sulfonates photoheterolysis of the Ar−OP/Ar−OS bond took place as the exclusive pathway.Fil: Bonesi, Sergio Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones en Hidratos de Carbono. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones en Hidratos de Carbono; ArgentinaFil: Protti, Stefano. Universita degli Studi di Pavia; ItaliaFil: Fagnoni, M.. Universita degli Studi di Pavia; Itali
    corecore