3,181 research outputs found

    Study of the wettability behavior of stainless steel surfaces after ultrafast laser texturing

    Get PDF
    The interest in superhydrophobic surfaces has grown exponentially over recent decades. Since the lotus leaf dual hierarchical structure was discovered, researchers have investigated the foundations of this behavior and many methods have been developed to obtain superhydrophobic surfaces. In this paper the possibility to use ultrafast laser treatments to obtain hydrophobic and superhydrophobic stainless surfaces was investigated on a AISI 316L stainless steel, ranging the total energy doses provided to the surfaces from 178 to 1143 J/cm2. As SEM-FEG images reveals, different surface microstructures can be obtained at the increasing values of energy dose. Independently on the specific values of laser treatment, all the obtained samples showed hydrophobic values of static contact angle. However, only particular surface microstructures allowed obtaining a self-cleaning surface characterized by low values of both contact angle hysteresis and roll-off angle. The obtained results led to define the effect of the laser parameters on the morphological, chemical and wetting surface properties allowing one to design new textures with the desired wetting properties, from “lotus effect” surfaces to “rose petal effect” surfaces

    Short range investigation of sub-micron zirconia particles

    Get PDF
    The Perturbed Angular Correlations technique was used to determine the nanoconfigurations and their thermal behavior in two non-aggregated zirconia nanospheres of unlike sizes obtained by adding different water amounts during preparation. Three residues containing- Zr surroundings were determined for the non-crystalline starting zirconias, the two organics containing- ones being particle size dependent. Upon crystallization, the nanospheres showed the stabilization of both tetragonal (t´- and t- forms) and cubic (Xc- form) phases. Nevertheless, their amounts, temperature of appearance and thermal evolution depended on the residues containing- precursors. It was observed, in addition, that the structure of the smaller nanospheres became gradually monoclinic. The bigger spheres remained stabilized up to the highest temperatures certainly due to their lower specific surface area that favors the permanence of the oxygen defective t´- form

    Measurement of the Charge Collection Efficiency after Heavy Non-Uniform Irradiation in BaBar Silicon Detectors

    Full text link
    We have investigated the depletion voltage changes, the leakage current increase and the charge collection efficiency of a silicon microstrip detector identical to those used in the inner layers of the BaBar Silicon Vertex Tracker (SVT) after heavy non-uniform irradiation. A full SVT module with the front-end electronics connected has been irradiated with a 0.9 GeV electron beam up to a peak fluence of 3.5 x 10^14 e^-/cm^2, well beyond the level causing substrate type inversion. We irradiated one of the two sensors composing the module with a non-uniform profile with sigma=1.4 mm that simulates the conditions encountered in the BaBar experiment by the modules intersecting the horizontal machine plane. The position dependence of the charge collection properties and the depletion voltage have been investigated in detail using a 1060 nm LED and an innovative measuring technique based only on the digital output of the chip.Comment: 7 pages, 13 figures. Presented at the 2004 IEEE Nuclear Science Symposium, October 18-21, Rome, Italy. Accepted for publication by IEEE Transactions on Nuclear Scienc

    The structure of ZrO2 phases and devetrification processes in a Ca-Zr-Si-O-based glass ceramic: a combined a-XRD and XAS study

    Get PDF
    The structure of Zr atomic environment in a CaO-ZrO2-SiO2 glass-ceramic has beenstudied combining x-ray absorption spectroscopy (XAS), X-ray diffraction (XRD) andanomalous-XRD (a-XRD) techniques as a function of thermal treatments. The analysisof XRD patterns demonstrates that the devitrification process, as a function ofthermal treatment, proceeds through the partial segregation of Zr-depleted phases(Wollastonite-like) and Zr-rich phases (Zr-oxides). The XAS and a-XRD measurementsat the Zr K edge have been exploited to get a closer insight on the atomicstructure around Zr ions. In the as quenched glass the Zr is 6-fold coordinated to Oxygenatoms in an amorphous environment rich of Ca and Si. Thermal treatment firstly(T=1000 - 1050 oC) determines the partial segregation of Zr in form of oxide whichcrystalline structure is that of tetragonal Zirconia (t-ZrO2). Raising the temperature(T=1100 oC) provokes the formation of ZrO2 crystallites in the monoclinic crystallographicphase (Baddeleyite: m-ZrO2). The analysis of XAS data demonstrates that aconsiderable amount of Zr still remains in an amorphous Calcium-Silicate phase

    Assessment of the levels of degradation in fat co- and by-products for feed uses and their relationships with some lipid composition parameters

    Get PDF
    This paper discusses the levels of degradation of some co- and byproducts of the food chain intended for feed uses. As the first part of a research project, 'Feeding Fats Safety', financed by the sixth Framework Programme-EC, a total of 123 samples were collected from 10 European countries, corresponding to fat co- and byproducts such as animal fats, fish oils, acid oils from refining, recycled cooking oils, and other. Several composition and degradation parameters (moisture, acid value, diacylglycerols and monoacylglycerols, peroxides, secondary oxidation products, polymers of triacylglycerols, fatty acid composition, tocopherols, and tocotrienols) were evaluated. These findings led to the conclusion that some fat by- and coproducts, such as fish oils, lecithins, and acid oils, show poor, nonstandardized quality and that production processes need to be greatly improved. Conclusions are also put forward about the applicability and utility of each analytical parameter for characterization and quality control

    Novel 3D printable bio-based and biodegradable poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) microspheres for selective laser sintering applications

    Get PDF
    Selective laser sintering (SLS) has become the most popular additive manufacturing process due to its high accuracy, productive efficiency, and surface quality. However, currently there are still very few commercially available polymeric materials suitable for this technique. This research work focused on the fabrication and characterization of bio-based and biodegradable microspheres obtained by oil-in-water emulsion solvent evaporation, starting from a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) biopolymer matrix. First, the fabrication parameters were optimized to improve the morphological, thermal, and flowability properties of the synthetized microspheres. Once the best production conditions were established, the PHBH microspheres were further used to study their effective 3D printability on an SLS 3D printer using geometries varying from simple shapes to architectures with more complex internal patterns. The results of this research revealed that PHBH has promising applicability for the SLS technique. This study undertook the first step toward broadening the range of polymeric materials for this additive manufacturing technology. These findings will contribute to a greater and wider dissemination of the SLS technique in the future, as well as they will bring this manufacturing process closer to applications, such as the biomedical sector, where the use of biodegradable and biocompatible materials can add value to the final application
    • …
    corecore