15 research outputs found

    Serum proteins in healthy and diseased Florida manatees (Trichechus manatus latirostris)

    Get PDF
    A major goal of this study was to determine whether serum protein fractions of healthy Florida manatees differ with age, sex, or living environments (wild versus housed). A second goal was to determine which serum protein fractions vary in diseased versus healthy manatees. Serum protein fractions were determined using agarose gel electrophoresis. Healthy adults had slightly higher total serum protein and total globulin concentrations than younger animals. This largely resulted from an increase in gamma globulins with age. Total serum protein, albumin, alpha-1 globulin, beta globulin, and total globulin concentrations were slightly higher in housed manatees compared to wild manatees, but there was no significant difference in the albumin/globulin (A/G) ratio, suggesting a difference in hydration between these groups. No significant differences were attributable to sex or pregnancy. Serum albumin concentrations and A/G ratios were significantly lower for manatees with boat trauma, entanglements, emaciation, or cold stress compared to healthy manatees. Variable increases were seen in alpha-1globulins, alpha-2 globulins, beta globulins, and gamma globulins. These globulin fractions contain positive acute-phase proteins and immunoglobulins, and their increases may reflect acute or chronic active inflammation. Changes in serum protein fractions were not consistent enough to justify the use of serum protein electrophoresis as a routine diagnostic test for manatees. However, serum (or plasma) protein electrophoresis is required when accurate values for albumin and globulins are needed in manatees and in determining which protein fractions may account for a hyperproteinemia or hypoproteinemia reported in a clinical chemistry panel

    Chromosome painting among Proboscidea, Hyracoidea and Sirenia: support for Paenungulata (Afrotheria, Mammalia) but not Tethytheria

    Get PDF
    Despite marked improvements in the interpretation of systematic relationships within Eutheria, particular nodes, including Paenungulata (Hyracoidea, Sirenia and Proboscidea), remain ambiguous. The combination of a rapid radiation, a deep divergence and an extensive morphological diversification has resulted in a limited phylogenetic signal confounding resolution within this clade both at the morphological and nucleotide levels. Cross-species chromosome painting was used to delineate regions of homology between Loxodonta africana (2n=56), Procavia capensis (2n=54), Trichechus manatus latirostris (2n=48) and an outgroup taxon, the aardvark (Orycteropus afer, 2n=20). Changes specific to each lineage were identified and although the presence of a minimum of 11 synapomorphies confirmed the monophyly of Paenungulata, no change characterizing intrapaenungulate relationships was evident. The reconstruction of an ancestral paenungulate karyotype and the estimation of rates of chromosomal evolution indicate a reduced rate of genomic repatterning following the paenungulate radiation. In comparison to data available for other mammalian taxa, the paenungulate rate of chromosomal evolution is slow to moderate. As a consequence, the absence of a chromosomal character uniting two paenungulates (at the level of resolution characterized in this study) may be due to a reduced rate of chromosomal change relative to the length of time separating successive divergence events

    Health Assessment and Seroepidemiologic Survey of Potential Pathogens in Wild Antillean Manatees (Trichechus manatus manatus)

    Get PDF
    The Antillean manatee (Trichechus manatus manatus), a subspecies of the West Indian manatee, inhabits fresh, brackish, and warm coastal waters distributed along the eastern border of Central America, the northern coast of South America, and throughout the Wider Caribbean Region. Threatened primarily by human encroachment, poaching, and habitat degradation, Antillean manatees are listed as endangered by the International Union for the Conservation of Nature. The impact of disease on population viability remains unknown in spite of concerns surrounding the species' ability to rebound from a population crash should an epizootic occur. To gain insight on the baseline health of this subspecies, a total of 191 blood samples were collected opportunistically from wild Antillean manatees in Belize between 1997 and 2009. Hematologic and biochemical reference intervals were established, and antibody prevalence to eight pathogens with zoonotic potential was determined. Age was found to be a significant factor of variation in mean blood values, whereas sex, capture site, and season contributed less to overall differences in parameter values. Negative antibody titers were reported for all pathogens surveyed except for Leptospira bratislava, L. canicola, and L. icterohemorrhagiae, Toxoplasma gondii, and morbillivirus. As part of comprehensive health assessment in manatees from Belize, this study will serve as a benchmark aiding in early disease detection and in the discernment of important epidemiologic patterns in the manatees of this region. Additionally, it will provide some of the initial tools to explore the broader application of manatees as sentinel species of nearshore ecosystem health

    Serum proteins in healthy and diseased Florida manatees (Trichechus manatus latirostris)

    Get PDF
    A major goal of this study was to determine whether serum protein fractions of healthy Florida manatees differ with age, sex, or living environments (wild versus housed). A second goal was to determine which serum protein fractions vary in diseased versus healthy manatees. Serum protein fractions were determined using agarose gel electrophoresis. Healthy adults had slightly higher total serum protein and total globulin concentrations than younger animals. This largely resulted from an increase in gamma globulins with age. Total serum protein, albumin, alpha-1 globulin, beta globulin, and total globulin concentrations were slightly higher in housed manatees compared to wild manatees, but there was no significant difference in the albumin/globulin (A/G) ratio, suggesting a difference in hydration between these groups. No significant differences were attributable to sex or pregnancy. Serum albumin concentrations and A/G ratios were significantly lower for manatees with boat trauma, entanglements, emaciation, or cold stress compared to healthy manatees. Variable increases were seen in alpha-1globulins, alpha-2 globulins, beta globulins, and gamma globulins. These globulin fractions contain positive acute-phase proteins and immunoglobulins, and their increases may reflect acute or chronic active inflammation. Changes in serum protein fractions were not consistent enough to justify the use of serum protein electrophoresis as a routine diagnostic test for manatees. However, serum (or plasma) protein electrophoresis is required when accurate values for albumin and globulins are needed in manatees and in determining which protein fractions may account for a hyperproteinemia or hypoproteinemia reported in a clinical chemistry panel

    Sexing Sirenians: Validation of Visual and Molecular Sex Determination in both Wild Dugongs (Dugong dugon) and Florida Manatees (Trichechus manatus latirostris).

    No full text
    Sexing wild marine mammals that show little to no sexual dimorphism is challenging. For sirenians that are difficult to catch or approach closely, molecular sexing from tissue biopsies offers an alternative method to visual discrimination. This paper reports the results of a field study to validate the use of two sexing methods: (1) visual discrimination of sex vs (2) molecular sexing based on a multiplex PCR assay which amplifies the male-specific SRY gene and differentiates ZFX and ZFY gametologues. Skin samples from 628 dugongs (Dugong dugon) and 100 Florida manatees (Trichechus manatus latirostris) were analysed and assigned as male or female based on molecular sex. These individuals were also assigned a sex based on either direct observation of the genitalia and/or the association of the individual with a calf. Individuals of both species showed 93 to 96% congruence between visual and molecular sexing. For the remaining 4 to 7%, the discrepancies could be explained by human error. To mitigate this error rate, we recommend using both of these robust techniques, with routine inclusion of sex primers into microsatellite panels employed for identity, along with trained field observers and stringent sample handling
    corecore