1,065 research outputs found

    Rebels Without a Cause: Youth and Terrorism in Contemporary Italian Film

    Get PDF
    This essay explores the representation of Italian terrorists in recent generational films set in the 1960s and 1970s. While they foreground the protagonists’ youth and celebrate it as a historically new condition, these coming-of-age narratives typically present radicalism either in terms of youthful idealism or youthful error, with corresponding nostalgic or revisionist approaches that obscure its ideological basis. An analysis of the selective generational appeal deployed by four recent films through narrative structure, style and casting highlights an alternative reading of the post-ideological approach to the representation of terrorism in the 21st century

    Optimal discrimination between transient and permanent faults

    Get PDF
    An important practical problem in fault diagnosis is discriminating between permanent faults and transient faults. In many computer systems, the majority of errors are due to transient faults. Many heuristic methods have been used for discriminating between transient and permanent faults; however, we have found no previous work stating this decision problem in clear probabilistic terms. We present an optimal procedure for discriminating between transient and permanent faults, based on applying Bayesian inference to the observed events (correct and erroneous results). We describe how the assessed probability that a module is permanently faulty must vary with observed symptoms. We describe and demonstrate our proposed method on a simple application problem, building the appropriate equations and showing numerical examples. The method can be implemented as a run-time diagnosis algorithm at little computational cost; it can also be used to evaluate any heuristic diagnostic procedure by compariso

    On the evaluation measures for machine learning algorithms for safety-critical systems

    Get PDF

    Preface

    Get PDF

    Exploring Anomaly Detection in Systems of Systems

    Get PDF

    Unsupervised Algorithms to Detect Zero-Day Attacks: Strategy and Application

    Get PDF
    In the last decade, researchers, practitioners and companies struggled for devising mechanisms to detect cyber-security threats. Among others, those efforts originated rule-based, signature-based or supervised Machine Learning (ML) algorithms that were proven effective for detecting those intrusions that have already been encountered and characterized. Instead, new unknown threats, often referred to as zero-day attacks or zero-days, likely go undetected as they are often misclassified by those techniques. In recent years, unsupervised anomaly detection algorithms showed potential to detect zero-days. However, dedicated support for quantitative analyses of unsupervised anomaly detection algorithms is still scarce and often does not promote meta-learning, which has potential to improve classification performance. To such extent, this paper introduces the problem of zero-days and reviews unsupervised algorithms for their detection. Then, the paper applies a question-answer approach to identify typical issues in conducting quantitative analyses for zero-days detection, and shows how to setup and exercise unsupervised algorithms with appropriate tooling. Using a very recent attack dataset, we debate on i) the impact of features on the detection performance of unsupervised algorithms, ii) the relevant metrics to evaluate intrusion detectors, iii) means to compare multiple unsupervised algorithms, iv) the application of meta-learning to reduce misclassifications. Ultimately, v) we measure detection performance of unsupervised anomaly detection algorithms with respect to zero-days. Overall, the paper exemplifies how to practically orchestrate and apply an appropriate methodology, process and tool, providing even non-experts with means to select appropriate strategies to deal with zero-days

    A template-based methodology for the specification and automated composition of performability models

    Get PDF
    Dependability and performance analysis of modern systems is facing great challenges: their scale is growing, they are becoming massively distributed, interconnected, and evolving. Such complexity makes model-based assessment a difficult and time-consuming task. For the evaluation of large systems, reusable submodels are typically adopted as an effective way to address the complexity and to improve the maintainability of models. When using state-based models, a common approach is to define libraries of generic submodels, and then compose concrete instances by state sharing, following predefined “patterns” that depend on the class of systems being modeled. However, such composition patterns are rarely formalized, or not even documented at all. In this paper, we address this problem using a model-driven approach, which combines a language to specify reusable submodels and composition patterns, and an automated composition algorithm. Clearly defining libraries of reusable submodels, together with patterns for their composition, allows complex models to be automatically assembled, based on a high-level description of the scenario to be evaluated. This paper provides a solution to this problem focusing on: formally defining the concept of model templates, defining a specification language for model templates, defining an automated instantiation and composition algorithm, and applying the approach to a case study of a large-scale distributed system69129330
    • …
    corecore