290 research outputs found

    Atomic States Entanglement in Carbon Nanotubes

    Full text link
    The entanglement of two atoms (ions) doped into a carbon nanotube has been investigated theoretically. Based on the photon Green function formalism for quantizing electromagnetic field in the presence of carbon nanotubes, small-diameter metallic nanotubes are shown to result in a high degree of the two-qubit atomic entanglement for long times due to the strong atom-field coupling.Comment: 4 pages, 2 figure

    Chemical analysis of aerosol in the Venusian cloud layer by reaction gas chromatography on board the Vega landers

    Get PDF
    The experiment on sulfuric acid aerosol determination in the Venusian cloud layer on board the Vega landers is described. An average content of sulfuric acid of approximately 1 mg/cu m was found for the samples taken from the atmosphere at heights from 63 to 48 km and analyzed with the SIGMA-3 chromatograph. Sulfur dioxide (SO2) was revealed in the gaseous sample at the height of 48 km. From the experimental results and blank run measurements, a suggestion is made that the Venusian cloud layer aerosol consists of more complicated particles than the sulfuric acid water solution does

    Relativistic calculations of the U91+(1s)-U92+ collision using the finite basis set of cubic Hermite splines on a lattice in coordinate space

    Full text link
    A new method for solving the time-dependent two-center Dirac equation is developed. The approach is based on the using of the finite basis of cubic Hermite splines on a three-dimensional lattice in the coordinate space. The relativistic calculations of the excitation and charge-transfer probabilities in the U91+(1s)-U92+ collisions in two and three dimensional approaches are performed. The obtained results are compared with our previous calculations employing the Dirac-Sturm basis sets [I.I. Tupitsyn et al., Phys. Rev. A 82, 042701 (2010)]. The role of the negative-energy Dirac spectrum is investigated within the monopole approximation

    Relativistic calculations of the K-K charge transfer and K-vacancy production probabilities in low-energy ion-atom collisions

    Full text link
    The previously developed technique for evaluation of charge-transfer and electron-excitation processes in low-energy heavy-ion collisions [I.I. Tupitsyn et al., Phys. Rev. A 82, 042701(2010)] is extended to collisions of ions with neutral atoms. The method employs the active electron approximation, in which only the active electron participates in the charge transfer and excitation processes while the passive electrons provide the screening DFT potential. The time-dependent Dirac wave function of the active electron is represented as a linear combination of atomic-like Dirac-Fock-Sturm orbitals, localized at the ions (atoms). The screening DFT potential is calculated using the overlapping densities of each ions (atoms), derived from the atomic orbitals of the passive electrons. The atomic orbitals are generated by solving numerically the one-center Dirac-Fock and Dirac-Fock-Sturm equations by means of a finite-difference approach with the potential taken as the sum of the exact reference ion (atom) Dirac-Fock potential and of the Coulomb potential from the other ion within the monopole approximation. The method developed is used to calculate the K-K charge transfer and K-vacancy production probabilties for the Ne(1s22s22p6)(1s^2 2s^2 2p^6) -- F8+(1s)^{8+}(1s) collisions at the F8+(1s)^{8+}(1s) projectile energies 130 keV/u and 230 keV/u. The obtained results are compared with experimental data and other theoretical calculations. The K-K charge transfer and K-vacancy production probabilities are also calculated for the Xe -- Xe53+(1s)^{53+}(1s) collision.Comment: 16 pages, 4 figure

    DETERMINATION OF DEFORMABILITY PARAMETERS OF CONCRETE SAMPLES BY THE FORMULAS OF FRACTURE MECHANICS

    Get PDF
    To determine the deformability parameters of concrete samples by the formulas of fracture mechanics, equilibrium tests were carried out at the stage of local deformation of the sample, which showed the correspondence of the change in external forces to the internal forces of the material resistance with the corresponding static development of the main crack. For the same purpose, the samples are tested for bending with an initial notch and the "load-deflection" diagram is recorded. In this work, we presented a test scheme for a specimen with a notch (crack) and constructed a diagram of the deformation of a specimen under bending "load-deflection". Based on it, it is possible to predict the destruction of the material, that is, to determine the value of the load at which the limit value of deflection or the displacement of the outer edges of the notch (opening the throat of the crack on the lower surface of the specimen) can be taken as the moment of loss of the resource of the material. Also, we examined the deformation of a concrete sample during three-point bending and presented a diagram of the deformation of a concrete sample within the plastic zone. Dependencies were derived for determining the ultimate relative strains under tension and bending. Based on the results obtained, the state diagrams of the stretched concrete and the deformation scheme of the normal section of the concrete sample were constructed. As a result, the conclusion and convergence of the results

    Nonpolar optical scattering of positronium in magnesium fluoride

    Get PDF
    We report the results of the analysis of the temperature broadening of the momentum distribution of delocalized Positronium (Ps) in Magnesium Fluoride in terms of optical deformation-potential scattering model (long-wavelength optical phonons). The Ps optical deformation-potential coupling constant DoD_{o} in MgF2_{2} has been determined to be (1.8±0.3)×109(1.8\pm0.3)\times10^{9} eV/cm. We also show that the Ps momentum distribution is sensitive to second-order phase transitions in those crystals where optical deformation-potential scattering is allowed in one and forbidden in another crystalline phase

    The study of the chemical composition of sorption substances

    Get PDF
    The article presents a study of the chemical composition of sorption substances. The chemical composition is established, the main prevailing elements and impurities are revealed. The crystal-chemical structure of sorption substances is proposed. A comparative analysis of the chemical composition and the classification of sorption substances, depending on the origi

    Analysis of hadron production in nucleus-nucleus interactions up to and out of kinematical limit of free NN-collisions in the frame of FRITIOF model

    Full text link
    In the framework of the modified FRITIOF model, the inclusive spectra of the cumulative π0\pi ^0-, π\pi ^- -mesons and protons produced in the nucleus-nucleus interactions at 4.5 GeV/c/nucleon and 4.2 GeV/c/nucleon are calculated. It is shown that the model reproduces qualitatively, and in some cases quantitatively the main experimental regularities of π\pi-mesons production, and "soft" part of the proton spectra. According to the model the production of the cumulative particles is connected with the mechanism of the "soft" nucleon-nucleon interaction.Comment: 12 pages, 11 figure
    corecore