12 research outputs found

    Diseases in Asian Aquaculture VII

    Get PDF
    Proceedings of the Seventh Symposium on Diseases in Asian Aquaculture 20-26 June 2008 Taipei, Taiwan

    Improving biosecurity: A necessity for aquaculture sustainability

    Get PDF
    The implementation of biosecurity measures is vital to the future development of aquaculture, if the culture of aquatic species is to make it possible to feed the global human population by 2030. Biosecurity includes control of the spread of aquatic plant and animal diseases and invasive pests, and the production of products that are safe to eat. For controls on diseases and invasive pests, it is necessary to implement programmes that involve all regional countries. Lessons from measures implemented in Asia need to be expanded/upscaled in Latin America, Africa and other emerging aquaculture regions. Such development will make countries more self sufficient and will feed local populations. Globally, there is good evidence that aquatic animal diseases and invasive animal and plant pests are being spread by hull fouling and ballast water in shipping, and serious aquatic animal diseases by the international trade in ornamental fish. While there has been a growing awareness of the danger of ballast water transfer, hull fouling remains a serious problem. It is widely recognized that ornamental fish present a disease risk, but individual countries have tried to address this alone, and there has not been an international effort to control the trade. Developments in genetics and molecular biology hold great potential for disease control, either by breeding for disease resistance, or by the use of rapid, specific, culture site testing. Currently, there is no evidence that the use of antibiotics in aquaculture poses a threat to human health or that antibiotic-resistant strains have developed; however, the future use of genetically modified aquatic organisms (GMOs) may negate the need for chemotherapy. Cultured aquatic organisms, selected for disease resistance or rapid growth, are likely to become more acceptable, and probably necessary, to feed the rapidly growing global population. Most global aquaculture occurs in developing Asian countries, in which aquaculture products can harbor zoonotic parasites, and there is a need to treat such products to negate the threat of parasitic zoonoses and permit international export. Climate change is likely to be a major influence on aquaculture in the future, with impacts on coastal aquaculture through increased sea levels affecting coastlines, and acidification. To feed the growing global population, it will be necessary to culture new species, for which research on diseases and invasiveness will be necessary to acquire the information necessary to implement biosecurity measures

    Understanding and applying risk analysis in aquaculture: A manual for decision makers

    No full text
    Aquaculture is a rapidly expanding sector of the global economy. Development of the industry under various national and regional jurisdictions has resulted in a diversity of regulatory frameworks. This manual has been produced in response to requests for guidance on the application of risk analysis with respect to aquaculture production. Aimed at decision-makers and senior managers involved in the sector, this manual provides an overview of the considerations for risk analysis in decision-making for all types of aquaculture, including the impacts of aquaculture operations on environmental, socio-political, economic and cultural values as well as the impacts to aquaculture from outside influences. This manual will promote wider understanding and acceptance of the applications and benefits of risk analysis in aquaculture

    Responsible aquaculture in 2050: Valuing local conditions and human innovations will be key to success

    No full text
    As aquaculture production expands, we must avoid mistakes made during increasing intensification of agriculture. Understanding environmental impacts and measures to mitigate them is important for designing responsible aquaculture production systems. There are four realistic goals that can make future aquaculture operations more sustainable and productive: (1) improvement of management practices to create more efficient and diverse systems at every production level; (2) emphasis on local decisionmaking, human capacity development, and collective action to generate productive aquaculture systems that fit into societal constraints and demands; (3) development of risk management efforts for all systems that reduce disease problems, eliminate antibiotic and drug abuse, and prevent exotic organism introduction into local waters; and (4) creation of systems to better identify more sustainably grown aquaculture products in the market and promote them to individual consumers. By 2050, seafood will be predominantly sourced through aquaculture, including not only finfish and invertebrates but also seaweeds

    From the basics to emerging diagnostic technologies: What is on the horizon for tilapia disease diagnostics?

    No full text
    Tilapia is an affordable protein source farmed in over 140 countries with the majority of production in low- and middle-income countries. Intensification of tilapia farming has exacerbated losses caused by emerging and re-emerging infectious diseases. Disease diagnostics play a crucial role in biosecurity and health management to mitigate disease loss and improve animal welfare in aquaculture. Three continuous levels of diagnostics (I, II and III) for aquatic species have been proposed by Food and Agriculture Organization of the United Nations (FAO) and the Network of Aquaculture Centers in Asia and the Pacific (NACA) to promote the integration of basic and advanced methods to achieve accurate and meaningful interpretation of diagnostic results. However, the recent proliferation of cutting-edge molecular methods applied in the diagnosis of diseases of aquacultured animals has shifted the focus of researchers and users away from basic approaches and toward molecular diagnostics, despite the fact that many diseases can be rapidly diagnosed using inexpensive, simple microscopic examination and that most emerging diseases in aquaculture were discovered by histopathology. This review, therefore, revisits and highlights the importance of the three levels of diagnostics for diseases of tilapia, particularly the frequently overlooked basic procedures (e.g., case history records, gross pathology, presumptive diagnostic methods and histopathology). The review also covers current and emerging molecular diagnostic technologies for tilapia pathogens including polymerase chain reaction methods (conventional, quantitative, digital), isothermal amplification methods Loop-mediated Isothermal Amplification (LAMP), recombinase polymerase amplification (RPA), clustered regularly interspaced short palindromic repeats (CRISPR)-based detection, lateral flow immunoassays, as well as discussing what is on the horizon for tilapia disease diagnostics (next generation sequencing, artificial intelligence, environmental Deoxyribonucleic Acid (DNA) and Ribonucleic Acid (RNA) and point-of-care testing) providing a future vision for transferring these technologies to farmers and stakeholders for a sustainable aquatic food system transformation

    Ensuring the Sustainable Future of the Rapidly Expanding Global Seaweed Aquaculture Industry – A Vision

    Get PDF
    This policy brief highlights key challenges that must be addressed for the long-term sustainability of the global seaweed industry, ensuring its role in providing nature-based solutions within the sustainable ocean economy agenda and in contributing to the UN Decade of Ocean Science for Sustainable Development (2021 – 2030). Seaweed production has grown rapidly over the past 50 years. It currently accounts for over 50 % of total global marine production, equating to ~35 million tonnes. In 2019, the industry’s total value was estimated at USD 14.7 billion. The seaweed value chain supports the livelihoods of approximately 6 million small-scale farmers and processors, both men and women, many of whom live in coastal communities in low- and middle-income countries. The aquaculture sector is increasingly interested in seaweed because of its potential for greater use in food, food supplements, animal feed, fertiliser and biostimulants, and in alternatives to fossil fuels and their derived products, such as plastics. Its cultivation can help restore degraded environments, increase ocean biodiversity and mitigate the effects of climate change and coastal acidification by capturing carbon and other nutrients. In low-, middle- and high-income countries, the seaweed industry has a wide-ranging potential to address the UN Sustainable Development Goals (SDGs) in particular, SDG 14 (life below water), SDG13 (climate action), SDG6 (decent work and economic growth) and SDG5 (gender equality). The global seaweed industry, however, faces significant challenges. For future sustainability, improvements are urgently needed in biosecurity and traceability, pest and disease identification and outbreak reporting, risk analysis to prevent transboundary spread, the establishment of high quality, disease-free seed-banks and nurseries and the conservation of genetic diversity in wild stocks. These improvements require technological innovation, capacity building and effective gender-responsive and co-ordinated policies, incentives and regulations. They will need to enhance occupational safety, whilst increasing the industry’s resilience to the impacts of climate change and production hazards, such as pest and disease outbreaks. To align with the SDGs, particular attentions will need to be paid to small scale farmers and processors to ensure that the globalisation of seaweed aquaculture supports the development of sustainable, resilient and inclusive livelihoods

    Probiotic actions of Bacillus cereus var. toyoi and Saccharomyces boulardii in silver catfish (Rhamdia quelen) larvae culture

    No full text
    The objective of this study was to evaluate the use of Bacillus cereus var. toyoi and Saccharomyces boulardii as probiotics to improve Rhamdia quelen culture. Six hundred larvaes (0.16±0.07 g) were divided in three replicate tanks (25-L recirculation, 20 ÂșC, photoperiod of 12 h light/12 h darkness) per treatment and were randomly assigned to the following treatments: Bacillus cereus var. toyoi; Saccharomyces boulardii; B. toyoi and S. boulardii; and control (without probiotic addition) for a period of 30 days. The fish were fed five times daily (56% crude protein - Supra alevino inicialÂź) and the probiotics were applied in water once a day. The doses of probiotics were <img src="/img/revistas/rbz/v41n3/aproximadamente.jpg">5 × 10(8) and <img src="/img/revistas/rbz/v41n3/aproximadamente.jpg">2 × 10(9) CFU (colony forming unit)/mL for B. cereus var. toyoi and S. boulardii, respectively. Both probiotics have an inhibitory effect in vitro against Vibrio carchariae and are able to grow in media prepared with fishery water; however, no effect was observed on growth parameters when they were administered to Rhamdia quelen larvae
    corecore