716 research outputs found

    Constraining Large Scale Structure Theories with the Cosmic Background Radiation

    Full text link
    We review the relevant 10+ parameters associated with inflation and matter content; the relation between LSS and primary and secondary CMB anisotropy probes; COBE constraints on energy injection; current anisotropy band-powers which strongly support the gravitational instability theory and suggest the universe could not have reionized too early. We use Bayesian analysis methods to determine what current CMB and CMB+LSS data imply for inflation-based Gaussian fluctuations in tilted Λ\LambdaCDM, Λ\LambdahCDM and oCDM model sequences with age 11-15 Gyr, consisting of mixtures of baryons, cold (and possibly hot) dark matter, vacuum energy, and curvature energy in open cosmologies. For example, we find the slope of the initial spectrum is within about 5% of the (preferred) scale invariant form when just the CMB data is used, and for Λ\LambdaCDM when LSS data is combined with CMB; with both, a nonzero value of ΩΛ\Omega_\Lambda is strongly preferred (≈2/3\approx 2/3 for a 13 Gyr sequence, similar to the value from SNIa). The ooCDM sequence prefers Ωtot<1\Omega_{tot}<1 , but is overall much less likely than the flat ΩΛ≠0\Omega_\Lambda \ne 0 sequence with CMB+LSS. We also review the rosy forecasts of angular power spectra and parameter estimates from future balloon and satellite experiments when foreground and systematic effects are ignored.Comment: 20 pages, LaTeX, 5 figures, 2 tables, uses rspublic.sty To appear in Philosophical Transactions of the Royal Society of London A, 1998. "Discussion Meeting on Large Scale Structure in the Universe," Royal Society, London, March 1998. Text and colour figures also available at ftp://ftp.cita.utoronto.ca/bond/roysoc9

    CMB Likelihood Functions for Beginners and Experts

    Full text link
    Although the broad outlines of the appropriate pipeline for cosmological likelihood analysis with CMB data has been known for several years, only recently have we had to contend with the full, large-scale, computationally challenging problem involving both highly-correlated noise and extremely large datasets (N>1000N > 1000). In this talk we concentrate on the beginning and end of this process. First, we discuss estimating the noise covariance from the data itself in a rigorous and unbiased way; this is essentially an iterated minimum-variance mapmaking approach. We also discuss the unbiased determination of cosmological parameters from estimates of the power spectrum or experimental bandpowers.Comment: Long-delayed submission. In AIP Conference Proceedings "3K Cosmology" held in Rome, Oct 5-10, 1998, edited by Luciano Maiani, Francesco Melchiorri and Nicola Vittorio, 343-347, New York, American Institute of Physics 199

    Identification of the OGLE-2003-BLG-235/MOA-2003-BLG-53 Planetary Host Star

    Get PDF
    We present the results of HST observations of the host star for the first definitive extrasolar planet detected by microlensing. The light curve model for this event predicts that the lens star should be separated from the source star by ~6mas at the time of the HST images. If the lens star is a late G, K or early M dwarf, then it will be visible in the HST images as an additional source of light that is blended with the source image. Unless the lens and source have exactly the same colors, its presence will also be revealed by a systematic shift between centroids of the source plus lens in different filter bands. The HST data indicates both of these effects: the HST source that matches the position of the source star is 0.21 magnitudes brighter in the ACS/HRC-F814W filter than the microlensing model predicts, and there is an offset of ~0.7mas between the centroid of this source in the F814W and F435W filter bands. We conclude the planetary host star has been detected in these HST images, and this identification of the lens star enables a complete solution of the lens system. The lens parameters are determined with a Bayesian analysis, averaging over uncertainties in the measured parameters, interstellar extinction, and allowing for the possibility of a binary companion to the source star. This yields a stellar mass of M_* = 0.63(+0.07/-0.09) M_solar and a planet mass of M_p = 2.6 (+0.8/-0.6) M_Jup at an orbital separation of 4.3 (+2.5/-0.8) AU. Thus, the lens system resembles our own Solar System, with a planet of ~3 Jupiter-masses in a Jupiter-like orbit around a star of two-thirds of a Solar mass. These conclusions can be tested with future HST images, which should reveal a broadening of the blended source-plus-lens point spread function due to the relative lens-source proper motion.Comment: 11 pages, with 3 figures. to appear in ApJ Lett (Aug 20 issue

    Present and future evidence for evolving dark energy

    Get PDF
    We compute the Bayesian evidences for one- and two-parameter models of evolving dark energy, and compare them to the evidence for a cosmological constant, using current data from Type Ia supernova, baryon acoustic oscillations, and the cosmic microwave background. We use only distance information, ignoring dark energy perturbations. We find that, under various priors on the dark energy parameters, LambdaCDM is currently favoured as compared to the dark energy models. We consider the parameter constraints that arise under Bayesian model averaging, and discuss the implication of our results for future dark energy projects seeking to detect dark energy evolution. The model selection approach complements and extends the figure-of-merit approach of the Dark Energy Task Force in assessing future experiments, and suggests a significantly-modified interpretation of that statistic.Comment: 10 pages RevTex4, 3 figures included. Minor changes to match version accepted by PR

    Myosin VI and its binding partner optineurin are involved in secretory vesicle fusion at the plasma membrane.

    Get PDF
    During constitutive secretion, proteins synthesized at the endoplasmic reticulum (ER) are transported to the Golgi complex for processing and then to the plasma membrane for incorporation or extracellular release. This study uses a unique live-cell constitutive secretion assay to establish roles for the molecular motor myosin VI and its binding partner optineurin in discrete stages of secretion. Small interfering RNA-based knockdown of myosin VI causes an ER-to-Golgi transport delay, suggesting an unexpected function for myosin VI in the early secretory pathway. Depletion of myosin VI or optineurin does not affect the number of vesicles leaving the trans-Golgi network (TGN), indicating that these proteins do not function in TGN vesicle formation. However, myosin VI and optineurin colocalize with secretory vesicles at the plasma membrane. Furthermore, live-cell total internal reflection fluorescence microscopy demonstrates that myosin VI or optineurin depletion reduces the total number of vesicle fusion events at the plasma membrane and increases both the proportion of incomplete fusion events and the number of docked vesicles in this region. These results suggest a novel role for myosin VI and optineurin in regulation of fusion pores formed between secretory vesicles and the plasma membrane during the final stages of secretion

    Development and Preliminary Testing of Porcine Blood-Derived Endothelial-like Cells for Vascular Tissue Engineering Applications:Protocol Optimisation and Seeding of Decellularised Human Saphenous Veins

    Get PDF
    Functional endothelial cells (EC) are a critical interface between blood vessels and the thrombogenic flowing blood. Disruption of this layer can lead to early thrombosis, inflammation, vessel restenosis, and, following coronary (CABG) or peripheral (PABG) artery bypass graft surgery, vein graft failure. Blood-derived ECs have shown potential for vascular tissue engineering applications. Here, we show the development and preliminary testing of a method for deriving porcine endothelial-like cells from blood obtained under clinical conditions for use in translational research. The derived cells show cobblestone morphology and expression of EC markers, similar to those seen in isolated porcine aortic ECs (PAEC), and when exposed to increasing shear stress, they remain viable and show mRNA expression of EC markers similar to PAEC. In addition, we confirm the feasibility of seeding endothelial-like cells onto a decellularised human vein scaffold with approximately 90% lumen coverage at lower passages, and show that increasing cell passage results in reduced endothelial coverage

    Segmentation of Endothelial Cell Boundaries of Rabbit Aortic Images Using a Machine Learning Approach

    Get PDF
    This paper presents an automatic detection method for thin boundaries of silver-stained endothelial cells (ECs) imaged using light microscopy of endothelium mono-layers from rabbit aortas. To achieve this, a segmentation technique was developed, which relies on a rich feature space to describe the spatial neighbourhood of each pixel and employs a Support Vector Machine (SVM) as a classifier. This segmentation approach is compared, using hand-labelled data, to a number of standard segmentation/thresholding methods commonly applied in microscopy. The importance of different features is also assessed using the method of minimum Redundancy, Maximum Relevance (mRMR), and the effect of different SVM kernels is also considered. The results show that the approach suggested in this paper attains much greater accuracy than standard techniques; in our comparisons with manually labelled data, our proposed technique is able to identify boundary pixels to an accuracy of 93%. More significantly, out of a set of 56 regions of image data, 43 regions were binarised to a useful level of accuracy. The results obtained from the image segmentation technique developed here may be used for the study of shape and alignment of ECs, and hence patterns of blood flow, around arterial branches

    A High-Resolution Spectrum of the Highly Magnified Bulge G-Dwarf MOA-2006-BLG-099S

    Get PDF
    We analyze a high-resolution spectrum of a microlensed G-dwarf in the Galactic bulge, acquired when the star was magnified by a factor of 110. We measure a spectroscopic temperature, derived from the wings of the Balmer lines, that is the same as the photometric temperature, derived using the color determined by standard microlensing techniques. We measure [Fe/H]=0.36 +/-0.18, which places this star at the upper end of the Bulge giant metallicity distribution. In particular, this star is more metal-rich than any bulge M giant with high-resolution abundances. We find that the abundance ratios of alpha and iron-peak elements are similar to those of Bulge giants with the same metallicity. For the first time, we measure the abundances of K and Zn for a star in the Bulge. The [K/Mg] ratio is similar to the value measured in the halo and the disk, suggesting that K production closely tracks alpha production. The [Cu/Fe] and [Zn/Fe] ratios support the theory that those elements are produced in Type II SNe, rather than Type Ia SNe. We also measured the first C and N abundances in the Bulge that have not been affected by first dredge-up. The [C/Fe] and [N/Fe] ratios are close to solar, in agreement with the hypothesis that giants experience only canonical mixing.Comment: 42 pages, 14 figures, submitted to Ap

    Approaches for advancing scientific understanding of macrosystems

    Get PDF
    The emergence of macrosystems ecology (MSE), which focuses on regional- to continental-scale ecological patterns and processes, builds upon a history of long-term and broad-scale studies in ecology. Scientists face the difficulty of integrating the many elements that make up macrosystems, which consist of hierarchical processes at interacting spatial and temporal scales. Researchers must also identify the most relevant scales and variables to be considered, the required data resources, and the appropriate study design to provide the proper inferences. The large volumes of multi-thematic data often associated with macrosystem studies typically require validation, standardization, and assimilation. Finally, analytical approaches need to describe how cross-scale and hierarchical dynamics and interactions relate to macroscale phenomena. Here, we elaborate on some key methodological challenges of MSE research and discuss existing and novel approaches to meet them
    • 

    corecore