238 research outputs found

    Implications of heterogeneous fracture distribution on reservoir quality; an analogue from the Torridon Group sandstone, Moine Thrust Belt, NW Scotland

    Get PDF
    This research was funded by a NERC CASE studentship (NERC code NE/I018166/1) in partnership with Midland Valley. Midland Valley's Move software was used for cross section construction and strain modelling. 3D Field software is acknowledged for contour map creation. Mark Cooper is thanked for constructive comments. Steven Laubach and Bill Dunne are thanked overseeing the editorial process and Magdalena Ellis Curry, Bertrand Gauthier and Arthur Lavenu are thanked for constructive reviews.Peer reviewedPublisher PD

    Henry Cadell’s Experimental Researches in Mountain Building : their lessons for interpreting thrust systems and fold-thrust structures

    Get PDF
    Funding The Fold-Thrust Research Group has been funded by InterOil, Santos, OilSearch and NAGRA. The original compilation of Cadell’s researches was part of an outreach programme funded by BP. Acknowledgements RWHB is indebted to the late John Mendum for arranging access to Cadell’s notebooks and his field maps that were lodged in the then offices of the British Geological Survey in Murchison House, Edinburgh. This formed part of a collaboration with BGS and the development of the “Assynt’s Geology” website in the early 2000s. Many of the images from Cadell’s notebooks, including his experimental results, were part of this site. Regrettably it has not been maintained and is no longer accessible. Rectifying this loss of resource forms the motivation for this contribution. We thank Juergen Adam and an anonymous referee for construct reviews, together with James Hammerstein for shepherding the manuscript through the editing process, although of course the views expressed in this paper remain the responsibility of the authors alone.Peer reviewedPostprin

    LiDAR, UAV or compass-clinometer? Accuracy, coverage and the effects on structural models

    Get PDF
    This study was carried out as part of a University of Aberdeen provided PhD supported by The NERC Centre for Doctoral Training in Oil & Gas, (grant reference: NE/M00578X/1). Thanks to Magda Chmielewska for her training and help with LiDAR processing, without which this study could not have been undertaken. Midland Valley Exploration is thanked for academic use of Move 2016 software. We gratefully acknowledge the detailed and constructive reviews by Mike James and an anonymous reviewer, and thanks to Bill Dunne for careful and thorough editorial comments, all of which greatly improved the manuscript.Peer reviewedPublisher PD

    Introduction to the Special Issue: Responsible AI in Libraries and Archives

    Get PDF
    Librarians and archivists are often early adopters and experimenters with new technologies. Our field is also interested in critically engaging with technology, and we are well-positioned to be leaders in the slow and careful consideration of new technologies. Therefore, as librarians and archivists have begun using artificial intelligence (AI) to enhance library services, we also aim to interrogate the ethical issues that arise while using AI to enhance collection description and discovery and streamline reference services and teaching. The IMLS-funded Responsible AI in Libraries and Archives project aims to create resources that will help practitioners make ethical decisions when implementing AI in their work. The case studies in this special issue are one such resource. Seven overarching ethical issues come to light in these case studies—privacy, consent, accuracy, labor considerations, the digital divide, bias, and transparency. This introduction reviews each issue and describes strategies suggested by case study authors to reduce harms and mitigate these issues

    Electroactive biofilms: new means for electrochemistry

    Get PDF
    This work demonstrates that electrochemical reactions can be catalysed by the natural biofilms that form on electrode surfaces dipping into drinking water or compost. In drinking water, oxygen reduction was monitored with stainless steel ultra-microelectrodes under constant potential electrolysis at )0.30 V/SCE for 13 days. 16 independent experiments were conducted in drinking water, either pure or with the addition of acetate or dextrose. In most cases, the current increased and reached 1.5–9.5 times the initial current. The current increase was attributed to biofilm forming on the electrode in a similar way to that has been observed in seawater. Epifluorescence microscopy showed that the bacteria size and the biofilm morphology depended on the nutrients added, but no quantitative correlation between biofilm morphology and current was established. In compost, the oxidation process was investigated using a titanium based electrode under constant polarisation in the range 0.10–0.70 V/SCE. It was demonstrated that the indigenous micro-organisms were responsible for the current increase observed after a few days, up to 60 mA m)2. Adding 10 mM acetate to the compost amplified the current density to 145 mA m)2 at 0.50 V/SCE. The study suggests that many natural environments, other than marine sediments, waste waters and seawaters that have been predominantly investigated until now, may be able to produce electrochemically active biofilm

    The importance of structural model availability on seismic interpretation

    Get PDF
    The authors thank Graham Yielding and Douglas Paton for their kind and supportive comments on the paper. BP/GUPCO are acknowledged for providing data from the Gulf of Suez. The authors acknowledge the support of MVE and use of Move software 2015.2 for this work. Juan Alcalde is funded by NERC grant NE/M007251/1, on interpretational uncertainty. The work could not have been completed without the support of the students of Integrated Petroleum Geoscience Master of Science degree at the University of Aberdeen (United Kingdom) who took part in the interpretation experiment.Peer reviewedPublisher PD

    Modified gravity without dark matter

    Full text link
    On an empirical level, the most successful alternative to dark matter in bound gravitational systems is the modified Newtonian dynamics, or MOND, proposed by Milgrom. Here I discuss the attempts to formulate MOND as a modification of General Relativity. I begin with a summary of the phenomenological successes of MOND and then discuss the various covariant theories that have been proposed as a basis for the idea. I show why these proposals have led inevitably to a multi-field theory. I describe in some detail TeVeS, the tensor-vector-scalar theory proposed by Bekenstein, and discuss its successes and shortcomings. This lecture is primarily pedagogical and directed to those with some, but not a deep, background in General RelativityComment: 28 pages, 10 figures, lecture given at Third Aegean Summer School, The Invisible Universe: Dark Matter and Dark Energy, minor errors corrected, references update

    Is cosmology consistent?

    Full text link
    We perform a detailed analysis of the latest CMB measurements (including BOOMERaNG, DASI, Maxima and CBI), both alone and jointly with other cosmological data sets involving, e.g., galaxy clustering and the Lyman Alpha Forest. We first address the question of whether the CMB data are internally consistent once calibration and beam uncertainties are taken into account, performing a series of statistical tests. With a few minor caveats, our answer is yes, and we compress all data into a single set of 24 bandpowers with associated covariance matrix and window functions. We then compute joint constraints on the 11 parameters of the ``standard'' adiabatic inflationary cosmological model. Out best fit model passes a series of physical consistency checks and agrees with essentially all currently available cosmological data. In addition to sharp constraints on the cosmic matter budget in good agreement with those of the BOOMERaNG, DASI and Maxima teams, we obtain a heaviest neutrino mass range 0.04-4.2 eV and the sharpest constraints to date on gravity waves which (together with preference for a slight red-tilt) favors ``small-field'' inflation models.Comment: Replaced to match accepted PRD version. 14 pages, 12 figs. Tiny changes due to smaller DASI & Maxima calibration errors. Expanded neutrino and tensor discussion, added refs, typos fixed. Combined CMB data, window and covariance matrix at http://www.hep.upenn.edu/~max/consistent.html or from [email protected]

    Detection Limits for Super-Hubble Suppression of Causal Fluctuations

    Full text link
    We investigate to what extent future microwave background experiments might be able to detect a suppression of fluctuation power on large scales in flat and open universe models. Such suppression would arise if fluctuations are generated by causal processes, and a measurement of a small suppression scale would be problematic for inflation models, but consistent with many defect models. More speculatively, a measurement of a suppression scale of the order of the present Hubble radius could provide independent evidence for a fine-tuned inflation model leading to a low-density universe. We find that, depending on the primordial power spectrum, a suppression scale modestly larger than the visible Horizon can be detected, but that the detectability drops very rapidly with increasing scale. For models with two periods of inflation, there is essentially no possibility of detecting a causal suppression scale.Comment: 8 pages, 4 figures, revtex, In Press Physical Review D 200

    Current constraints on Cosmological Parameters from Microwave Background Anisotropies

    Get PDF
    We compare the latest observations of Cosmic Microwave Background (CMB) Anisotropies with the theoretical predictions of the standard scenario of structure formation. Assuming a primordial power spectrum of adiabatic perturbations we found that the total energy density is constrained to be Ωtot=1.03±0.06\Omega_{tot}=1.03\pm0.06 while the energy density in baryon and Cold Dark Matter (CDM) are Ωbh2=0.021±0.003\Omega_bh^2=0.021\pm0.003 and Ωcdmh2=0.12±0.02\Omega_{cdm}h^2=0.12\pm0.02, (all at 68% C.L.) respectively. The primordial spectrum is consistent with scale invariance, (ns=0.97±0.04n_s=0.97\pm0.04) and the age of the universe is t0=14.6±0.9t_0=14.6\pm0.9 Gyrs. Adding informations from Large Scale Structure and Supernovae, we found a strong evidence for a cosmological constant ΩΛ=0.700.05+0.07\Omega_{\Lambda}=0.70_{-0.05}^{+0.07} and a value of the Hubble parameter h=0.69±0.07h=0.69\pm0.07. Restricting this combined analysis to flat universes, we put constraints on possible 'extensions' of the standard scenario. A gravity waves contribution to the quadrupole anisotropy is limited to be r0.42r \le 0.42 (95% c.l.). A constant equation of state for the dark energy component is bound to be wQ0.74w_Q \le -0.74 (95% c.l.). We constrain the effective relativistic degrees of freedom Nν6.2N_\nu \leq 6.2 and the neutrino chemical potential 0.01ξe0.18-0.01 \leq \xi_e \leq 0.18 and ξμ,τ2.3|\xi_{\mu,\tau}|\leq 2.3 (massless neutrinos).Comment: The status of cosmological parameters before WMAP. In press on Phys. Rev. D., Rapid Communication, 6 pages, 5 figure
    corecore