2,162 research outputs found

    Identification of the OGLE-2003-BLG-235/MOA-2003-BLG-53 Planetary Host Star

    Get PDF
    We present the results of HST observations of the host star for the first definitive extrasolar planet detected by microlensing. The light curve model for this event predicts that the lens star should be separated from the source star by ~6mas at the time of the HST images. If the lens star is a late G, K or early M dwarf, then it will be visible in the HST images as an additional source of light that is blended with the source image. Unless the lens and source have exactly the same colors, its presence will also be revealed by a systematic shift between centroids of the source plus lens in different filter bands. The HST data indicates both of these effects: the HST source that matches the position of the source star is 0.21 magnitudes brighter in the ACS/HRC-F814W filter than the microlensing model predicts, and there is an offset of ~0.7mas between the centroid of this source in the F814W and F435W filter bands. We conclude the planetary host star has been detected in these HST images, and this identification of the lens star enables a complete solution of the lens system. The lens parameters are determined with a Bayesian analysis, averaging over uncertainties in the measured parameters, interstellar extinction, and allowing for the possibility of a binary companion to the source star. This yields a stellar mass of M_* = 0.63(+0.07/-0.09) M_solar and a planet mass of M_p = 2.6 (+0.8/-0.6) M_Jup at an orbital separation of 4.3 (+2.5/-0.8) AU. Thus, the lens system resembles our own Solar System, with a planet of ~3 Jupiter-masses in a Jupiter-like orbit around a star of two-thirds of a Solar mass. These conclusions can be tested with future HST images, which should reveal a broadening of the blended source-plus-lens point spread function due to the relative lens-source proper motion.Comment: 11 pages, with 3 figures. to appear in ApJ Lett (Aug 20 issue

    A Second Method to Photometrically Align Multi-Site Microlensing Light Curves: Source Color in Planetary Event MOA-2007-BLG-192

    Get PDF
    At present, microlensing light curves from different telescopes and filters are photometrically aligned by fitting them to a common model. We present a second method based on photometry of common field stars. If two spectral responses are similar (or the color of the source is known) then this technique can resolve important ambiguities that frequently arise when predicting the future course of the event, and that occasionally persist even when the event is over. Or if the spectral responses are different, it can be used to derive the color of the source when that is unknown. We present the essential elements of this technique and apply it to the case of MOA-2007-BLG-192, an important planetary event for which the system may be a terrestrial planet orbiting a brown dwarf or very low mass star. The refined estimate of the source color that we derive here, V-I=2.36 +- 0.03, will aid in making the estimate of the lens mass more precise.Comment: 16 pages including 3 figures. Submitted to Ap

    The Canada-UK Deep Sub-Millimeter Survey II: First identifications, redshifts and implications for galaxy evolution

    Full text link
    Identifications are sought for 12 sub-mm sources detected by Eales et al (1998). Six are securely identified, two have probable identifications and four remain unidentified with I_AB > 25. Spectroscopic and estimated photometric redshifts indicate that four of the sources have z < 1, and four have 1 < z < 3, with the remaining four empty field sources probably lying at z > 3. The spectral energy distributions of the identifications are consistent with those of high extinction starbursts such as Arp 220. The far-IR luminosities of the sources at z > 0.5 are of order 3 x 10^12 h_50^-2 L_sun, i.e. slightly larger than that of Arp 220. Based on this small sample, the cumulative bolometric luminosity function shows strong evolution to z ~ 1, but weaker or possibly even negative evolution beyond. The redshift dependence of the far-IR luminosity density does not appear, at this early stage, to be inconsistent with that seen in the ultraviolet luminosity density. Assuming that the energy source in the far-IR is massive stars, the total luminous output from star-formation in the Universe is probably dominated by the far-IR emission. The detected systems have individual star-formation rates (exceeding 300 h_50^-2 M_O yr^-1) that are much higher than seen in the ultraviolet selected samples, and which are sufficient to form substantial stellar populations on dynamical timescales of 10^8 yr. The association with merger-like morphologies and the obvious presence of dust makes it attractive to identify these systems as forming the metal-rich spheroid population, in which case we would infer that much of this activity has occurred relatively recently, at z ~ 2.Comment: 17 pages text + 14 figures. Accepted for publication in the Astrophysical Journal. Gzipped tar file contains one text.ps file for text and tables, one Fig2.jpg file for Fig 2, and 13 Fig*.ps files for the remaining figure

    Nonparametric Reconstruction of the Dark Energy Equation of State from Diverse Data Sets

    Full text link
    The cause of the accelerated expansion of the Universe poses one of the most fundamental questions in physics today. In the absence of a compelling theory to explain the observations, a first task is to develop a robust phenomenology. If the acceleration is driven by some form of dark energy, then, the phenomenology is determined by the dark energy equation of state w. A major aim of ongoing and upcoming cosmological surveys is to measure w and its time dependence at high accuracy. Since w(z) is not directly accessible to measurement, powerful reconstruction methods are needed to extract it reliably from observations. We have recently introduced a new reconstruction method for w(z) based on Gaussian process modeling. This method can capture nontrivial time-dependences in w(z) and, most importantly, it yields controlled and unbaised error estimates. In this paper we extend the method to include a diverse set of measurements: baryon acoustic oscillations, cosmic microwave background measurements, and supernova data. We analyze currently available data sets and present the resulting constraints on w(z), finding that current observations are in very good agreement with a cosmological constant. In addition we explore how well our method captures nontrivial behavior of w(z) by analyzing simulated data assuming high-quality observations from future surveys. We find that the baryon acoustic oscillation measurements by themselves already lead to remarkably good reconstruction results and that the combination of different high-quality probes allows us to reconstruct w(z) very reliably with small error bounds.Comment: 14 pages, 9 figures, 3 table

    Present and future evidence for evolving dark energy

    Get PDF
    We compute the Bayesian evidences for one- and two-parameter models of evolving dark energy, and compare them to the evidence for a cosmological constant, using current data from Type Ia supernova, baryon acoustic oscillations, and the cosmic microwave background. We use only distance information, ignoring dark energy perturbations. We find that, under various priors on the dark energy parameters, LambdaCDM is currently favoured as compared to the dark energy models. We consider the parameter constraints that arise under Bayesian model averaging, and discuss the implication of our results for future dark energy projects seeking to detect dark energy evolution. The model selection approach complements and extends the figure-of-merit approach of the Dark Energy Task Force in assessing future experiments, and suggests a significantly-modified interpretation of that statistic.Comment: 10 pages RevTex4, 3 figures included. Minor changes to match version accepted by PR

    Outcrop conservation : Promoting accessibility, inclusivity, and reproducibility through digital preservation

    Get PDF
    We thank Georgina Heldreich for providing useful comments on an early draft of the manuscript. We gratefully acknowledge the detailed and constructive reviews by Kim Senger and two anonymous reviewers, all of which greatly improved the manuscript.Peer reviewedPublisher PD

    Improving Cosmological Distance Measurements by Reconstruction of the Baryon Acoustic Peak

    Full text link
    The baryon acoustic oscillations are a promising route to the precision measure of the cosmological distance scale and hence the measurement of the time evolution of dark energy. We show that the non-linear degradation of the acoustic signature in the correlations of low-redshift galaxies is a correctable process. By suitable reconstruction of the linear density field, one can sharpen the acoustic peak in the correlation function or, equivalently, restore the higher harmonics of the oscillations in the power spectrum. With this, one can achieve better measurements of the acoustic scale for a given survey volume. Reconstruction is particularly effective at low redshift, where the non-linearities are worse but where the dark energy density is highest. At z=0.3, we find that one can reduce the sample variance error bar on the acoustic scale by at least a factor of 2 and in principle by nearly a factor of 4. We discuss the significant implications our results have for the design of galaxy surveys aimed at measuring the distance scale through the acoustic peak.Comment: 5 pages, LaTeX. Submitted to the Astrophysical Journa

    The Hot and Cold Spots in the WMAP Data are Not Hot and Cold Enough

    Full text link
    This paper presents a frequentist analysis of the hot and cold spots of the cosmic microwave background data collected by the Wilkinson Microwave Anisotropy Probe (WMAP). We compare the WMAP temperature statistics of extrema (number of extrema, mean excursion, variance, skewness and kurtosis of the excursion) to Monte-Carlo simulations. We find that, on average, the local maxima (high temperatures in the anisotropy) are too cold and the local minima are too warm. In order to quantify this claim we describe a two-sided statistical hypothesis test which we advocate for other investigations of the Gaussianity hypothesis. Using this test we reject the isotropic Gaussian hypothesis at more than 99% confidence in a well-defined way. Our claims are based only on regions that are outside the most conservative WMAP foreground mask. We perform our test separately on maxima and minima, and on the north and south ecliptic and Galactic hemispheres and reject Gaussianity at above 95% confidence for almost all tests of the mean excursions. The same test also shows the variance of the maxima and minima to be low in the ecliptic north (99% confidence), but consistent in the south; this effect is not as pronounced in the Galactic north and south hemispheres.Comment: 5 pages, 1 figure, text updated to match published version, conclusions unchange
    • 

    corecore