119 research outputs found
The Search for Invariance: Repeated Positive Testing Serves the Goals of Causal Learning
Positive testing is characteristic of exploratory behavior, yet it seems to be at odds with the aim of information seeking. After all, repeated demonstrations of one’s current hypothesis often produce the same evidence and fail to distinguish it from potential alternatives. Research on the development of scientific reasoning and adult rule learning have both documented and attempted to explain this behavior. The current chapter reviews this prior work and introduces a novel theoretical account—the Search for Invariance (SI) hypothesis—which suggests that producing multiple positive examples serves the goals of causal learning. This hypothesis draws on the interventionist framework of causal reasoning, which suggests that causal learners are concerned with the invariance of candidate hypotheses. In a probabilistic and interdependent causal world, our primary goal is to determine whether, and in what contexts, our causal hypotheses provide accurate foundations for inference and intervention—not to disconfirm their alternatives. By recognizing the central role of invariance in causal learning, the phenomenon of positive testing may be reinterpreted as a rational information-seeking strategy
The Selaginella Genome Identifies Genetic Changes Associated with the Evolution of Vascular Plants
Vascular plants appeared ~410 million years ago then diverged into several lineages of which only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes (1). We report here the genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first non-seed vascular plant genome reported. By comparing gene content in evolutionary diverse taxa, we found that the transition from a gametophyte- to sporophyte- dominated life cycle required far fewer new genes than the transition from a non-seed vascular to a flowering plant, while secondary metabolic genes expanded extensively and in parallel in the lycophyte and angiosperm lineages. Selaginella differs in post- transcriptional gene regulation, including small RNA regulation of repetitive elements, an absence of the tasiRNA pathway and extensive RNA editing of organellar genes
Inhibitory control, but not prolonged object-related experience appears to affect physical problem-solving performance of pet dogs
Human infants develop an understanding of their physical environment through playful interactions with objects. Similar processes may influence also the performance of non-human animals in physical problem-solving tasks, but to date there is little empirical data to evaluate this hypothesis. In addition or alternatively to prior experiences, inhibitory control has been suggested as a factor underlying the considerable individual differences in performance reported for many species. Here we report a study in which we manipulated the extent of object-related experience for a cohort of dogs (Canis familiaris) of the breed Border Collie over a period of 18 months, and assessed their level of inhibitory control, prior to testing them in a series of four physical problem-solving tasks. We found no evidence that differences in object-related experience explain variability in performance in these tasks. It thus appears that dogs do not transfer knowledge about physical rules from one physical problem-solving task to another, but rather approach each task as a novel problem. Our results, however, suggest that individual performance in these tasks is influenced in a complex way by the subject’s level of inhibitory control. Depending on the task, inhibitory control had a positive or a negative effect on performance and different aspects of inhibitory control turned out to be the best predictors of individual performance in the different tasks. Therefore, studying the interplay between inhibitory control and problem-solving performance will make an important contribution to our understanding of individual and species differences in physical problem-solving performance
Energy metabolism, altered proteins, sirtuins and ageing: converging mechanisms?
The predominant molecular symptom of ageing is the accumulation of altered gene products. Nutritional studies show that ageing in animals can be significantly influenced by dietary restriction. Genetics has revealed that ageing may be controlled by changes in intracellular NAD/NADH ratio regulating sirtuin activity. Physiological and other approaches indicate that mitochondria may also regulate ageing. A mechanism is proposed which links diet, exercise and mitochondria-dependent changes in NAD/NADH ratio to intracellular generation of altered proteins. It is suggested that ad libitum feeding conditions decrease NAD availability which also decreases metabolism of the triose phosphate glycolytic intermediates, glyceraldehyde-3-phosphate and dihydroxyacetone-phosphate, which can spontaneously decompose into methylglyoxal (MG). MG is a highly toxic glycating agent and a major source of protein advanced-glycosylation end-products (AGEs). MG and AGEs can induce mitochondrial dysfunction and formation of reactive oxygen species (ROS), as well as affect gene expression and intracellular signalling. In dietary restriction–induced fasting, NADH would be oxidised and NAD regenerated via mitochondrial action. This would not only activate sirtuins and extend lifespan but also suppress MG formation. This proposal can also explain the apparent paradox whereby increased aerobic activity suppresses formation of glycoxidized proteins and extends lifespan. Variation in mitochondrial DNA composition and consequent mutation rate, arising from dietary-controlled differences in DNA precursor ratios, could also contribute to tissue differences in age-related mitochondrial dysfunction
Recommended from our members
Effects of explaining on children's preference for simpler hypotheses
Research suggests that the process of explaining influences causal reasoning by prompting learners to favor hypotheses that offer "good" explanations. One feature of a good explanation is its simplicity. Here, we investigate whether prompting children to generate explanations for observed effects increases the extent to which they favor causal hypotheses that offer simpler explanations, and whether this changes over the course of development. Children aged 4, 5, and 6 years observed several outcomes that could be explained by appeal to a common cause (the simple hypothesis) or two independent causes (the complex hypothesis). We varied whether children were prompted to explain each observation or, in a control condition, to report it. Children were then asked to make additional inferences for which the competing hypotheses generated different predictions. The results revealed developmental differences in the extent to which children favored simpler hypotheses as a basis for further inference in this task: 4-year-olds did not favor the simpler hypothesis in either condition; 5-year-olds favored the simpler hypothesis only when prompted to explain; and 6-year-olds favored the simpler hypothesis whether or not they explained
Dose dependent effect of statins on postoperative atrial fibrillation after cardiac surgery among patients treated with beta blockers
<p>Abstract</p> <p>Background</p> <p>Previous studies on the effects of Statins in preventing atrial fibrillation (AF) after cardiac surgery have shown conflicting results. Whether statins prevent AF in patients treated with postoperative beta blockers and whether the statin-effect is dose related are unknown.</p> <p>Methods</p> <p>We retrospectively studied 1936 consecutive patients who underwent coronary artery bypass graft (CABG) (n = 1493) or valve surgery (n = 443) at the Minneapolis Veterans Affairs Medical Center. All patients were in sinus rhythm before the surgery. Postoperative beta blockers were administered routinely (92% within 24 hours postoperatively).</p> <p>Results</p> <p>Mean age was 66+10 years and 68% of the patients were taking Statins. Postoperative AF occurred in 588 (30%) patients and led to longer length of stay in the intensive care unit versus those without AF (5.1+7.6 days versus 2.5+2.3 days, p < 0.0001). Patients with a past history of AF had a 5 times higher risk of postoperative AF (odds ratio 5.1; 95% confidence interval 3.4 to 7.7; p < 0.0001). AF occurred in 31% of patients taking statins versus 29% of the others (p = 0.49). In multivariable analysis, statins were not associated with AF (odds ratio (OR) 0.93, 95% confidence interval (CI) 0.7 to 1.2; p = 0.59). However, in a subgroup analysis, the patients treated with Simvastatin >20 mg daily had a 36% reduction in the risk of postoperative AF (OR 0.64, 95% CI 0.43 to 0.6; p = 0.03) in comparison to those taking lower dosages.</p> <p>Conclusion</p> <p>Among cardiac surgery patients treated with postoperative beta blockers Statin treatment reduces the incidence of postoperative AF when used at higher dosages</p
A Diverse and Flexible Teaching Toolkit Facilitates the Human Capacity for Cumulative Culture
© 2017, The Author(s). Human culture is uniquely complex compared to other species. This complexity stems from the accumulation of culture over time through high- and low-fidelity transmission and innovation. One possible reason for why humans retain and create culture, is our ability to modulate teaching strategies in order to foster learning and innovation. We argue that teaching is more diverse, flexible, and complex in humans than in other species. This particular characteristic of human teaching rather than teaching itself is one of the reasons for human’s incredible capacity for cumulative culture. That is, humans unlike other species can signal to learners whether the information they are teaching can or cannot be modified. As a result teaching in humans can be used to support high or low fidelity transmission, innovation, and ultimately, cumulative culture
Effects of calorie restriction on life span of microorganisms
Calorie restriction (CR) in microorganisms such as budding and fission yeasts has a robust and well-documented impact on longevity. In order to efficiently utilize the limited energy during CR, these organisms shift from primarily fermentative metabolism to mitochondrial respiration. Respiration activates certain conserved longevity factors such as sirtuins and is associated with widespread physiological changes that contribute to increased survival. However, the importance of respiration during CR-mediated longevity has remained controversial. The emergence of several novel metabolically distinct microbial models for longevity has enabled CR to be studied from new perspectives. The majority of CR and life span studies have been conducted in the primarily fermentative Crabtree-positive yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, but studies in primarily respiratory Crabtree-negative yeast and obligate aerobes can offer complementary insight into the more complex mammalian response to CR. Not only are microorganisms helping characterize a conserved cellular mechanism for CR-mediated longevity, but they can also directly impact mammalian metabolism as part of the natural gut flora. Here, we discuss the contributions of microorganisms to our knowledge of CR and longevity at the level of both the cell and the organism
Improving total saccharification yield of Arabidopsis plants by vessel-specific complementation of caffeoyl shikimate esterase (cse) mutants
- …
