90 research outputs found

    Supplements, nutrition, and alternative therapies for the treatment of traumatic brain injury

    Get PDF
    Studies using traditional treatment strategies for mild traumatic brain injury (TBI) have produced limited clinical success. Interest in treatment for mild TBI is at an all time high due to its association with the development of chronic traumatic encephalopathy and other neurodegenerative diseases, yet therapeutic options remain limited. Traditional pharmaceutical interventions have failed to transition to the clinic for the treatment of mild TBI. As such, many pre-clinical studies are now implementing non-pharmaceutical therapies for TBI. These studies have demonstrated promise, particularly those that modulate secondary injury cascades activated after injury. Because no TBI therapy has been discovered for mild injury, researchers now look to pharmaceutical supplementation in an attempt to foster success in human clinical trials. Non-traditional therapies, such as acupuncture and even music therapy are being considered to combat the neuropsychiatric symptoms of TBI. In this review, we highlight alternative approaches that have been studied in clinical and pre-clinical studies of TBI, and other related forms of neural injury. The purpose of this review is to stimulate further investigation into novel and innovative approaches that can be used to treat the mechanisms and symptoms of mild TBI

    Combination antiretroviral therapy and the risk of myocardial infarction

    Get PDF

    Building safer robots: Safety driven control

    Get PDF
    In recent years there has been a concerted effort to address many of the safety issues associated with physical human-robot interaction (pHRI). However, a number of challenges remain. For personal robots, and those intended to operate in unstructured environments, the problem of safety is compounded. In this paper we argue that traditional system design techniques fail to capture the complexities associated with dynamic environments. We present an overview of our safety-driven control system and its implementation methodology. The methodology builds on traditional functional hazard analysis, with the addition of processes aimed at improving the safety of autonomous personal robots. This will be achieved with the use of a safety system developed during the hazard analysis stage. This safety system, called the safety protection system, will initially be used to verify that safety constraints, identified during hazard analysis, have been implemented appropriately. Subsequently it will serve as a high-level safety enforcer, by governing the actions of the robot and preventing the control layer from performing unsafe operations. To demonstrate the effectiveness of the design, a series of experiments have been conducted using a MobileRobots PeopleBot. Finally, results are presented demonstrating how faults injected into a controller can be consistently identified and handled by the safety protection system. © The Author(s) 2012

    Re-fracture of Distal Radius and Hardware Repair in the Setting of Trauma

    No full text
    Distal radius fractures are one of the most common fractures in the elderly. Falls and motor vehicle collisions lead to increased risk for this type of fracture. A seventy-three year-old female had a previous history of distal radius fracture with repair by open reduction and internal fixation. She was involved in a motor vehicle collision that re-fractured the distal radius. The plate was bent and required removal, which is a very rare but potentially serious complication. Surgery was done to fix the open reduction and internal fixation with volar locking plates while removing damaged hardware. Only a select few cases have reported hardware failure as a cause of complications. Among those cases, high-energy activities and maintained stress on the hardware were likely causes. Distal radius fractures are the most common upper extremity fracture in the elderly. We highlight a unique case of re-fracture in the setting of trauma with prior hardware failure and describe the strategy for hardware repair
    corecore