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Introduction

One of the fundamental issues in HRI is to enable robust
mappings of the robot’s low-level perceptions of the world
and the symbolic terms used by humans to describe the
world. When a shared symbol grounding is achieved (when
human and robot use the same terms to denote the same
physical entities) a two way interaction is enabled. This
interaction is an important step towards robots assisting hu-
mans in everyday tasks at home, as the human can easily un-
derstand the “intelligence” of the robot in a domain, and in
turn the robot can query the human to bootstrap more knowl-
edge to better assist in complex or novel situations.

A symbol grounding system must regularize the connec-
tions between the sensed physical world and language. Con-
sider such a system running on a home care robot. If a box
of pasta appears in front of the robot’s sensors, a symbol
identifying it (“pasta box”) should be generated with high
consistency. The architecture should maintain the coherence
of perceptually-grounded symbols over time, so knowledge
of the location, permanence, and ubiquity of certain items is
needed in order to track pasta box1, for instance, and dis-
tinguish it from others. If something temporarily occludes
pasta box1 from the sensors, the architecture should not
create a new symbol for the object when it reappears. If
another box of pasta appears in a different place at the same
time, then a second pasta symbol should be created, as one
object cannot be in two places at once.

This paper presents a preliminary overview to the sym-
bol grounding problem for HRI that relies on monocular vi-
sion processing and hierarchical ontologies to help define
symbols. Our approach focuses on the use of a long-term
memory model for a robot in a home environment that per-
sists over a significant duration. The robot must learn and
remember the properties, locations, and functions of hun-
dreds of objects with which the homeowner interacts during
normal activities. Starting with an a priori long-term mem-
ory stored in an ontology that will be updated throughout its
operation, the robot then needs to link its perception of ob-
jects as well as actions (both its own and the homeowner’s)
to representations in its long-term memory. The long-term
memory needs to be linked to both a working memory and
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a perceptual memory in order to support the following func-
tions:

• Queries of the type:

– Where is object X?

– Why do you think it is there?

– When was object X last used and where?

• Reasoning:

– How likely is object X to have moved?

– What sensor(s) are best used to find object X?

– For what functions can object X be used?

• Generalization and specialization:

– Bring me an object of type Y

– Bring me something similar in function to X

• Learning

– Remember this object and call it X

– Object X appears to be a new type of object class Y

• Activity recognition

– Why is the person using object X?

– What objects will a person need to do an activity?

Large-scale Perceptual Anchoring

At the sensory level, the main challenge for this architecture
is to create and maintain connections between percepts and
symbols which refer to the same objects. This sensor-to-
symbol problem has also been called the perceptual anchor-
ing problem. Perceptual anchoring is a subset of symbol
grounding that mainly concerns maintaining the appropriate
symbol-percept link over time in robotic systems called an
anchor. In a real home environment, a robot can encounter
several hundreds or thousands of objects; thus, an important
component is an efficient matching mechanism to match a
newly acquired object to an existing anchor.

In this work, we follow an approach which utilizes the
fact that both perceptual and symbolic information about
anchors is available in order to enable a fast matching of
anchors according to symbolic categories in a bottom-up
manner (Loutfi, Coradeschi, and Saffiotti 2005). Persson
and Loutfi (2013) presented a method to summarize a large
database of existing anchors and enable matching of new
objects. This method uses binary-valued visual features to
anchor objects, where all binary-valued visual features of an



object are summarized through a weighted frequency count
into 2D arrays and structured into computationally efficient
hash tables. Hash tables are created according to symbolic
categories such that a hash table encapsulates all objects
with a joint symbolic category, e.g. a hash table is created
for all objects associated with the symbol “pasta box”.

Currently, these hash tables and symbolic categories are
built from a rich reference space of known objects photos
and descriptions, which has been automatically extracted
from online resources. As a result, an object match of a
hash table in reference space will also result in a percept-
symbol connection through the joint symbolic category for
the hash table. For example, visual features on a new box of
pasta placed in front of the robot will match the stored fea-
tures of anchors in the hash table associated with the symbol
“pasta box”. This will trigger the creation of a new anchor
pasta box1 that becomes an instance of the BoxOfPasta cat-
egory in the ontology and thus has all the properties and re-
lations associated with boxes of pasta.

Ontology

An ontology is a rigorous organization of knowledge of a do-
main, containing all relevant entities and their relations. In
this work, the ontology describes the available objects, their
capabilities, the tasks that can be performed, and the result-
ing states of those tasks (locations, temperatures, etc.). The
ontology includes terms for entities that range from the gen-
eral (e.g., PhysicalEntity) to specific (Pasta). Our ontology
also has terms for particular products that are known objects
recognizable by the vision system. These are described in
the ontology itself using product information (name, dimen-
sions, mass, etc.). The ontology is represented in OWL so
that off-the-shelf OWL reasoners can be used to perform in-
ference and maintain ontology consistency. Our domestic
robot OWL ontology was built using TRACLabs’ graphical
software suite PRONTOE (Bell et al. 2013), which is used
to define the classes, instances, and properties of the objects
in the robot’s environment and can be used by non-experts.

Querying to Enable HRI

Given an ontology and an anchoring system that can match
perception to ontology categories, human interaction with
the robot can occur by querying the ontology. This query-
ing should happen in a natural fashion. To do this, we are
using the dynamic predictive memory architecture (DPMA).
DPMA integrates the reactive execution system RAPs (Firby
1987) with a DMAP parser (Martin and Firby 1991). The
RAPs system has reactive action packages to process queries
and commands and to disambiguate parser results. When
DPMA is started, it loads the ontology of the domain and
starts the RAPs process, which monitors working memory
for the appearance of a parsed query. When the user in-
puts a string like “How many tables are there?” in a UI, the
statement is parsed and formatted into a description that is
sent to the DPMA working memory. The RAPs system in-
terprets that description and runs its own deductive query,
which in our example returns a list of table instances. RAPs
then packages up the list as a string and sends that back to

the UI for display to the user. Eventually, we expect to han-
dle more complicated expressions such as “What items in
the kitchen used to be somewhere else?”.

Related work

The integration of knowledge, representation, and reason-
ing (KRR) with embodied systems has been an increasingly
interesting topic for cognitive robotics, including seman-
tic mapping (Galindo et al. 2005; 2008), improving plan-
ning and control (Mozos et al. 2007), and HRI (Holzapfel,
Neubig, and Waibel 2008; Kruijff et al. 2007). Pangercic
et al. (2009) considers semantic knowledge, and in partic-
ular encyclopedic knowledge, in the context of household
robotic environments. Another approach focuses on prac-
tical and grounded knowledge representation systems for
autonomous household robots (Tenorth and Beetz 2008).
Other HRI-oriented approaches focus on human-robot di-
alog. Zender et al. (2007) present an HRI architecture for
human augmented mapping is used by a robot to improve
its autonomously acquired metric map with qualitative in-
formation about locations and objects in the environment.
Typically, such systems use small KRR systems, tailored to
the specific application at hand.

The systems mentioned here, even if implicitly deal-
ing with anchoring, lack a generic solution to the symbol
grounding problem. They hard-code ad hoc solutions or use
very small knowledge sets. Similarly, they often do not rea-
son about multiple instances of the same type of object, ei-
ther in the perceived scene or over time.

Conclusions and Future Work

This paper has discussed perceptual anchoring and its poten-
tial to enable HRI via symbolic representations of objects.
The work presented here is a first step towards enabling per-
ceptual anchoring to operate with larger symbolic (seman-
tic) models such as ontologies, with a focus on large scale
and long term anchoring in this context. Future work in-
cludes improving knowledge of common object uses and ex-
tending the representation of objects to characterize move-
ment/change over time. These improvements may be facil-
itated by mining the Internet for new information about ob-
jects of interest and by aligning our ontology with one or
more relevant external ontologies. Inferring additional prop-
erties of objects through reasoning (e.g., “Cooking pasta
makes it hot”) and incorporating additional sensory modali-
ties (i.e. 3D data through RGB-D sensors) will also improve
recognition and reasoning. The methods proposed here will
be developed and validated on two smart home test plat-
forms, one in Sweden and one in Houston, Texas.
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