865 research outputs found

    Modeling canopy-induced turbulence in the Earth system: a unified parameterization of turbulent exchange within plant canopies and the roughness sublayer (CLM-ml v0)

    Get PDF
    Land surface models used in climate models neglect the roughness sublayer and parameterize within-canopy turbulence in an ad hoc manner. We implemented a roughness sublayer turbulence parameterization in a multilayer canopy model (CLM-ml v0) to test if this theory provides a tractable parameterization extending from the ground through the canopy and the roughness sublayer. We compared the canopy model with the Community Land Model (CLM4.5) at seven forest, two grassland, and three cropland AmeriFlux sites over a range of canopy heights, leaf area indexes, and climates. CLM4.5 has pronounced biases during summer months at forest sites in midday latent heat flux, sensible heat flux, gross primary production, nighttime friction velocity, and the radiative temperature diurnal range. The new canopy model reduces these biases by introducing new physics. Advances in modeling stomatal conductance and canopy physiology beyond what is in CLM4.5 substantially improve model performance at the forest sites. The signature of the roughness sublayer is most evident in nighttime friction velocity and the diurnal cycle of radiative temperature, but is also seen in sensible heat flux. Within-canopy temperature profiles are markedly different compared with profiles obtained using Monin–Obukhov similarity theory, and the roughness sublayer produces cooler daytime and warmer nighttime temperatures. The herbaceous sites also show model improvements, but the improvements are related less systematically to the roughness sublayer parameterization in these canopies. The multilayer canopy with the roughness sublayer turbulence improves simulations compared with CLM4.5 while also advancing the theoretical basis for surface flux parameterizations

    Dissecting causal asymmetries in inductive generalization

    Get PDF
    Suppose we observe something happen in an interaction be- tween two objects A and B. Can we then predict what will hap- pen in an interaction between A and C, or between B and C? Recent research, inspired by work on the “causal asymmetry”, suggests that people use cues to causal agency to guide object- based generalization decisions, even in relatively abstract set- tings. When object A possesses cues to causal agency (e.g. it moves, remains stable throughout the interaction), people tend to predict that what happened will probably also occur in an interaction between A and C, but not between B and C. Here we replicate and extend this work, with the goal of identify- ing the cues that people use to determine that an object is a causal agent. In four experiments, we manipulate three prop- erties of the agent and recipient objects. We find that people anchor their inductive generalizations around the agent object when that object possesses all three cues to causal agency, but removing either cue abolishes the asymmetry

    A rational model of spatial neglect

    Get PDF
    Spatial neglect has been a phenomenon of interest for perceptual and neuropsychological researchers for decades. However, the underlying cognitive processes remain unclear. We provide a Bayesian framework for the classic line bisection task in spatial neglect, regarding it as rational inferences in the face of uncertain information. A Bayesian observer perceives the left and right endpoints of a line with uncertainty, and leverages prior expectations about line lengths to compensate for this uncertainty. This Bayesian model provides a basis for characterizing different patterns of behavior. Our model also captures the paradoxical cross-over effect observed in earlier studies as a natural outcome when uncertainty is high and the observer falls back on priors. It provides measures that correlate well with measures from other neglect tests, and can accurately distinguish stroke patients from healthy controls. It has the potential to facilitate spatial neglect studies and inform clinical decisions

    Influence of Vertical Heterogeneities in the Canopy Microenvironment on Interannual Variability of Carbon Uptake in Temperate Deciduous Forests

    Full text link
    Vegetation structure and function are key design choices in terrestrial models that affect the relationship between carbon uptake and environmental drivers. Here, we investigate how representing canopy vertical structure in a terrestrial biosphere model- that is, micrometeorological, leaf area, and leaf water profiles- influences carbon uptake at five U.S. temperate deciduous forest sites in July. Specifically, we test whether the interannual variability (IAV) of gross primary productivity (GPP) responds differently to four abiotic environmental drivers- air temperature, relative humidity, incoming shortwave radiation, and soil moisture- using either a Community Land Model multilayer canopy model (CLM- ml) or a big- leaf model (CLM4.5/CLM5). We conclude that vertical leaf area and microclimatic profiles (temperature, humidity, and wind) do not impact GPP IAV compared to a single- layer model when plant hydraulics is excluded. However, with a mechanistic representation of plant hydraulics there is vertically varying water stress in CLM- ml, and the sensitivity of carbon uptake to particular climate variables changes with height, resulting in dampened canopy- scale GPP IAV relative to CLM4.5. Dampening is due to both a reduced dependence on soil moisture and opposing climatic forcing on different leaf layers. Such dampening is not evident in the single- layer representation of plant hydraulic water stress implemented in the recently released CLM5. Overall, both model representations of the canopy fail to accurately simulate observed GPP IAV and this may be related by their inability to capture the upper range of observed hourly GPP and diffuse light- GPP relationships that cannot be resolved by canopy structure alone.Key PointsExplicitly simulated leaf area and microclimatic profiles do not affect gross primary productivity (GPP) interannual variability compared to a - big- leaf- simplificationMultilayer plant hydraulics lead to vertically varying water stress, altering leaf- layer responses to interannual climate variationsAll model simulations underestimate hourly GPP compared to FLUXNET estimates, adversely impacting simulated GPP interannual variabilityPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156484/2/jgrg21710_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156484/1/jgrg21710.pd

    Understanding spatial neglect:A Bayesian perspective

    Get PDF
    Spatial neglect has been a phenomenon of interest for perceptual and neuropsychological researchers for decades. However, the underlying cognitive processes remain unclear. We provide a Bayesian framework for the classic line bisection task in spatial neglect, regarding bisection responses as rational inferences in the face of uncertain information. A Bayesian observer perceives the left and right endpoints of a line with uncertainty, and leverages prior expectations about line lengths to compensate for this uncertainty. This Bayesian model provides a basis for characterizing different patterns of neglect behavior. Our model also captures the paradoxical cross-over effect observed in earlier studies. It provides measures that correlate well with measures from other neglect tests, and can accurately distinguish stroke patients from healthy controls

    Exploring the axion potential and axion walls in dense quark matter

    Full text link
    We study the potential of the Quantum Chromodynamics axion in hot and/or dense quark matter, within a Nambu-Jona-Lasinio-like model that includes the coupling of the axion to quarks. Differently from previous studies, we implement local electrical neutrality and β−\beta-equilibrium, which are relevant for the description of the quark matter in the core of compact stellar objects. Firstly we compute the effects of the chiral crossover on the axion mass and self-coupling. We find that the low energy properties of axion are very sensitive to the phase transition of Quantum Chromodynamics, in particular, when the bulk quark matter is close to criticality. Then, for the first time in the literature we compute the axion potential at finite quark chemical potential and study the axion domain walls in bulk quark matter. We find that the energy barrier between two adjacent vacuum states decrease in the chirally restored phase: this results in a lower surface tension of the walls. Finally, we comment on the possibility of production of walls in dense quark matter.Comment: 10 pages, 7 figure

    Cation disorder dominates the defect chemistry of high-voltage LiMn1.5Ni0.5O4 (LMNO) spinel cathodes

    Get PDF
    High-voltage spinel LiMn1.5Ni0.5O4 (LMNO) can exist in a Mn/Ni ordered P4332 or disordered Fd[3 with combining macron]m arrangement with a majority of literature studies reporting improved electrochemical performance for the disordered phase. Through modifying synthesis conditions, the Mn/Ni ordering can be tuned, however oxygen and Mn3+ stoichiometries are also affected, making it difficult to decouple these responses and optimise performance. Here, we investigate all intrinsic defects in P4332 LMNO under various growth conditions, using density functional theory (DFT) calculations. We find that the majority of defects are deep and associated with small polarons (Mn3+, Mn2+ and Ni3+) formation. The tendency for cation disorder can be explained by the low formation energy of the antisite defects and their stoichiometric complexes. The intrinsic Fermi level of LMNO varies from moderately n-type under oxygen-poor conditions to weakly p-type under oxygen-rich conditions. Our work explains experimental observations (e.g. the Mn/Ni disorder) and provides guidelines for defect-controlled synthesis
    • …
    corecore