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Abstract

Suppose we observe something happen in an interaction be-
tween two objects A and B. Can we then predict what will hap-
pen in an interaction between A and C, or between B and C?
Recent research, inspired by work on the “causal asymmetry”,
suggests that people use cues to causal agency to guide object-
based generalization decisions, even in relatively abstract set-
tings. When object A possesses cues to causal agency (e.g. it
moves, remains stable throughout the interaction), people tend
to predict that what happened will probably also occur in an
interaction between A and C, but not between B and C. Here
we replicate and extend this work, with the goal of identify-
ing the cues that people use to determine that an object is a
causal agent. In four experiments, we manipulate three prop-
erties of the agent and recipient objects. We find that people
anchor their inductive generalizations around the agent object
when that object possesses all three cues to causal agency, but
removing either cue abolishes the asymmetry.
Keywords: causal reasoning; generalization; inductive biases;
intuitive physics; causal asymmetry

Introduction
Suppose you add honey to your tea and find that the tea tastes
sweeter. How would you generalize this newly-found knowl-
edge? Should you infer that putting anything in your tea will
make your tea sweeter, or that honey makes things sweeter
in general? Generalization is a difficult problem when rea-
soning about interactions between objects: You may observe
interactions between objects A and B, and later encounter in-
teractions involving A and C, or one involving B and C, which
features of the first interaction do you expect to generalize?
Should you attribute the effect of the first interaction to prop-
erties of object A, B, or both?

In the honey and tea case, we can turn to pre-existing causal
knowledge for help: we know that being sweet is a property
of food items, and that sweetness can transmit to things it
adds to. Hence, we should infer that honey makes things
sweeter, and not that anything we put into tea makes our tea
sweeter. In general, causality is a powerful guide to induc-
tive generalization (Gelman, 2003; Rehder & Hastie, 2001),
limiting the vast space of possibilities to a handful of possi-
ble ones (Griffiths & Tenenbaum, 2009; Kemp et al., 2010;
Lagnado & Sloman, 2006).

But what structures causal domain knowledge? People
seem to naturally impose causal roles onto objects based on
how they interact, construing one object as a causal “agent”

*These authors contributed equally to this work

and another as a passive “recipient” (Mayrhofer & Wald-
mann, 2015; White, 2006), even in situations where science
would not single out either of them as special. For instance,
when billiard ball A collides with ball B, people tend to say
that A caused B to move, even though from the point of view
of Newtonian mechanics, it would be equally valid to say that
ball B caused ball A to stop moving (Michotte, 1963). White
(2006) summarizes such inductive biases under term “causal
asymmetry”, and we argue that the cues that compel people
to make such causal judgments in perceptual singular causal
events also serve as inductive biases that guide people’s gen-
eralization predictions.

In particular, we are interested in identifying the exact cues
that people use to decide causal anchors (Hafri et al., 2018;
Mayrhofer & Waldmann, 2014; White, 2014). A recent study
by Zhao et al. (2022) finds evidence that people anchor causal
generalization predictions with respect to the agent object
only, but their design was not fine-grained enough to identify
what factors about these objects that lead people to treat one
as the agent, and hence the special anchor for the purpose of
generalization. In this paper, we present four experiments that
aim to isolate these factors. Our approach brings together two
strands of research: computational models of categorization
(Anderson, 1991; Goodman et al., 2008; Navarro et al., 2006;
Nosofsky, 2011; Rehder & Hastie, 2001), as well as research
on how people construct causal representations of singular
events (Lagnado et al., 2013; Mayrhofer & Waldmann, 2014;
Michotte, 1963; White, 2006, 2007, 2014), from the perspec-
tive of how object interactions probe causal anchoring.

Causal asymmetries in object-based categorization
We derive our predictions from a recent computational model
of object-based categorization (Zhao et al., 2022), which
builds upon work on Bayesian theories of categorization and
the idea of program induction (Anderson, 1991; Goodman et
al., 2008; Kemp et al., 2010, 2012; Piantadosi et al., 2016).

According to the model, people conclude different causal
laws upon observing different interactions between objects
(Figure 1). Perceptual features are materials for the content
of causal effects, and the way objects interact gives rise to
causal roles such as being an agent or recipient, which decides
which object’s features to focus on when constructing causal
laws. In the honey and tea example, taking honey as the agent
object and tea as recipient leads one to conclude that things
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Figure 1: Schematic representation of the object-based
causal categorization model (Zhao et al., 2022). The model
uses perceptual features to construct the content of causal
laws, and decides focus on causal roles according to how ob-
jects interact. The constructed causal laws are then applied to
make generalization predictions, which exhibit causal asym-
metries when the right causal cues are present. Here we are
interested in how the way that objects interact influences the
assignment of causal roles (red circle).

like honey transmit their taste to the recipient, and hence one
may generalize that honey can make water taste sweeter too.

This model operates on a feature similarity-based catego-
rization process and singular event causal induction mech-
anism. The categorization process is agnostic about which
features should be taken into account—they consider all the
possible perceptual features equally important. However, the
model puts different weights on causal agent/recipient roles
with a focus parameter, that later on can be determined by
looking at how people make generalizations.

Here is how. Suppose people anchor their categorization
process with the agent object, i.e., they only consider the
agent object’s features when deciding how general a causal
law should be. If we allow participants to observe six inter-
actions that always involve the same agent object along with
a range of different recipient objects (Figure 2A, ‘Fixed-L’
panel), people will be biased to assume that all these interac-
tions are ruled by the same causal law, and hence use all of
the six observations to infer what this causal law consists of.
Contrast to this case, if we allow participants to observe six
interactions where the agent object is different every time and
the recipient object is the same (Figure 2A, ‘Fixed-R’ panel),
then people will (by assumption) infer that each interaction is
determined by its own causal law, and only have one trial’s
worth of evidence to infer the content of each causal law.

The prediction, then, is that people in the first condition
(where the agent object is always the same) should agree

with each other more when they make predictions about what
should happen in novel interactions, because they have abun-
dant evidence to infer a single causal law, while people in
the second condition (where the agent object is varied) are
more uncertain and show less agreement with each other dur-
ing generalization. If people are not biased toward anchor-
ing on the agent object, however, then we should not observe
a difference in inter-participant agreement between the two
conditions. 1

Zhao et al. (2022) reported a causal asymmetry in an ex-
periment using a design similar to the one described above,
and their results supported the bias toward anchoring on the
agent object in participants’ generalizations. However, their
model presumes clear-cut causal roles: one object is the agent
and the other object is the recipient. In fact, the agent and re-
cipient objects in their study differed on many dimensions,
making it impossible to tell how people decide on the causal
focus in the first place. Here, we adapt their experimental de-
sign to narrow down on the cues that people use to anchor the
categorization process (Figure 1, red circle).

Possible cues to causal roles
Figure 3A illustrates the original animation in Zhao et al.
(2022). In their setup, the agent objects (on the left) differed
from the recipient objects along three dimensions: the agent
object was marked by a glowing yellow border; it moved to-
ward the recipient object, which had no border. When the
agent object touched the recipient object, the recipient object
would change into the result form, while the agent object re-
mained unchanged. As illustrated in Figure 1, the way objects
interact with each other indicate their causal roles, and causal
roles then influence the focus parameter in the categorization
process.

Interactions as shown in Figure 3A convolute three possi-
ble factors: movement, change of state, and nominal indica-
tor. Each of these factors has theoretical reasons to induce the
observed asymmetry in generalizations.

Movement As shown in Michotte (1963)’s famous launch-
ing effect, movement seems to be a fundamental factor in
causal perception. People watching simple physical inter-
actions between two objects report that the moving object
causes the state-change of the other object (Michotte, 1963;
Scholl & Tremoulet, 2000). In Figure 3A, the fact that the ob-
ject on the left moved might have led participants to consider
that the object on the left was causally responsible for what
happened to the object on the right.

Stability Change of state is another possible marker for in-
troducing a causal asymmetry. Soo & Rottman (2018) dis-
covered that in time series data, people are more likely to
think that the object that remains stable is the cause and the
object that changes is the effect. Again, in Figure 3A, the

1The above is an intuitive explanation for why the effect should
arise – see Zhao et al. (2022) for rigorous exposition of how this
prediction follows from a computational model of object-based cat-
egorization.
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Figure 2: A. Learning pairs for the original condition. Objects marked with yellow glowing borders are the agent object. B.
Task interface. Top box: visual summaries for tested learning pairs. Middle: place to play animations, triggered by clicking the
“test” button. Bottom: interface for generalization predictions.

agent object does not change during the interaction, while the
recipient object changes after contact with the agent object.
This asymmetry in state change (stability) may be another
reason for biasing the focus parameter toward the agent.

Indicator In Zhao et al. (2022)’s original experiment, the
agent object was marked by a glowing yellow border, and par-
ticipants were instructed that a glowing yellow border means
the object is “active”, and that active stones can change the
other inactive stones. If participants assume that such instruc-
tions are relevant (Grice, 1975; Sperber & Wilson, 1986),
they might have constructed causal laws that are anchored in
the objects labeled as being active. In addition, the glowing
yellow border might also have led participants to pay more
visual attention to the agent objects.

Experiments
Our aim is trying to identify which of these cues are responsi-
ble for the causal asymmetry Zhao et al. (2022) found in their
data. We test one of the three factors (movement, change of
state/stability, and visual-nominal indicator) separately, and
measure their effect on the level of inter-person agreement
in causal generalizations using a similar “keeping one ob-
ject constant” design (Figure 2A). As explained above, if the
agent object (the object on the left in the original design) em-
bodies cues that people use to anchor categorization, then we
should observe higher inter-participant agreement in the con-
dition where the agent object remains the same across inter-
actions than in the condition where it varies.2

2While we could in principle also look at the proportion of par-
ticipants’ correct responses (i.e. responses that match the ground
truth used to generate the training examples), this information is less

Methods
Participants Two-hundred-and-two participants were re-
cuited from Amazon Mechanical Turk (82 females, Mage =
37.6± 10.1). Twenty-eight participants were excluded from
analysis because they failed to provide task-relevant re-
sponses in free-text inputs, leading to one-hundred-and-
seventy-four participants in total. Participants were paid both
for their time and a performance-based bonus. The task took
12.5±10.1 minutes.

Materials and design Objects in this experiment are com-
posed of a shading feature, ranging in {light, medium, dark,
very dark} shades of blue, and number of edges, ranging from
three (triangle) to seven (heptagon). The ground truth causal
relationship we used to generate the training examples is the
same across four experiments: the recipient object becomes
one shade darker than itself and gains one more edge than the
agent object (Figure 2 & 3). Note that the final state of the re-
cipient object is a function of both its own features and those
of the agent object. Therefore, the ground truth used in gen-
erating training examples does not pre-suppose asymmetries.

Experiment 1 is a replication of Zhao et al. (2022), in
which we used the original animation (Figure 3A) as in their
paper and code. Here, the object on the Left is intuitively
seen as a causal agent, and the object on the Right is intu-
itively seen as the causal recipient.

Experiment 2 aims to dissect the movement factor from
the original animation. We designed an animation as in
Figure 3B, where the Left object remains static while the
Right object moves. When the Right object touches the Left

helpful because there are many possible hypotheses, in addition to
the ground truth rule, that are consistent with the data.
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Figure 3: Illustration of various animations for the same underlying causal relationship. Objects with glowing yellow borders
were told to be “active” in instructions. Full stimuli are available on OSF.

object, the moving object Right changes according to the
ground truth causal relationship, while the Left object stays
unchanged as in the original animation. By this animation,
we removed the movement cue from the Left object.

Experiment 3 uses an animation that removes the stabil-
ity cue from the Left object (Figure 3C). While keeping the
indicator and movement factors identical to the original ani-
mation, it is now the Left object, rather than the original Right
object, that changes into the result form after the interaction.

Experiment 4 removes the glowing yellow border from
the Left object (Figure 3D), while keeping the movement and
stability factors as identical to the original animation.

Following Zhao et al. (2022), for all four experiments,
we manipulated (between-subjects) whether the Left object
stayed the same across the six interactions while the Right
object varied (fixed-L condition), or whether the Left object
varied across interactions while the Right object stayed the
same (fixed-R condition).

Procedure All four experiments followed the same proce-
dure. After reading instructions and passing a comprehension
quiz, participants proceeded to a learning phase, where they
were invited to test causal interactions for six pairs of ob-
jects, by clicking a “test” button and watching the subsequent
animated outcomes (Figure 2B, middle panel). A visual sum-
mary of each tested pair was shown after the test on top of
the screen, and remained visible until the end of the experi-
ment (Figure 2B, top panel). Next, participants were asked
to write down their best guesses about the causal relation-
ship between those objects. After that, participants went into
the inductive generalization phase, where they made sixteen
generalization predictions about novel pairs of objects. Each
generalization task was presented sequentially and in random
order. Participants composed their predictions by selecting
from two drop-down menus, one for the shading feature and
another for shape (Figure 2B, bottom panel).

Results

Systematic generalization Our key dependent measure is
the inter-participant agreement in generalization, which we
measure using Cronbach’s alpha over how many participants

in a given condition agree with each other in their predictions:

ρτ =
k

k−1

(
1− kp(1− p)

σ2
X

)
(1)

In Equation 1, k is the number of participants in one con-
dition, p is the probability of choosing an object if randomly
answered (p = 1/16), and X is the selection vector for a gen-
eralization task. The outcome consistency measure ranges
from -Inf (indicating uniform spread across all selections) and
1 (indicating a perfect agreement between participants; note
that ρτ can only approach 1 when k tends to infinity).

For a total 4×2×16 = 128 generalization tasks, the mean
consistency ρτ = 0.80±074 with max = 0.91 and min = 0.39,
demonstrating a high level of agreement between partici-
pants. Fisher’s exact test confirmed that for all eight between-
subject conditions, participants’ generalizations are not ran-
dom, p < 0.001. Therefore, we conclude that participants
made systematic generalization predictions in all eight con-
ditions, even though there were just six data points, no strict
ground truth, and potentially misleading animation types.

Causal asymmetry in generalizations Figure 4A summa-
rizes task-wise consistency measures aggregated per condi-
tion. Experiment 1 (original) replicates the causal asymmetry
in Zhao et al. (2022): participants in the fixed-L condition
(original fixed-agent) made more homogeneous predictions
across 16 generalization tasks (Mρτ

= 0.83±0.06), and those
in the fixed-R condition (original fixed-recipient) made more
diverse predictions (Mρτ

= 0.76 ± 0.11), t(15) = 1.92, p =
.04.

However, none of the other three experiments exhibits any
causal asymmetry (Figure 4A). In Experiment 2 (movement,
p = .29), Experiment 3 (stability, p = .64), and Experiment 4
(indicator, p= .18), mean consistency measures are at similar
levels between fixed-L and fixed-R conditions, and no signif-
icant difference was detected. This indicates that all three
factors contribute together to the original causal asymmetry
effect, and removing any one of them from the Left object
leads people to treating both the agent and recipient equally
in generalizations.
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original movement stability indicator
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Figure 4: Experiment results. A. Generalization congruency per condition; y-axis is task-wise Cronbach’s alpha value. B.
Self-report labels with respect to which object’s features were mentioned for inference.

Focuses in categorization To understand how people fo-
cus their categorization processes under different interaction
cues, we analyzed participants’ free text self-reports collected
at the end of the learning phase. We coded these self-reports
using left, right, both and none to represent which object peo-
ple referred to when describing a causal relationship. For
example, “become darker than itself” is classified as right
in Experiments 1, 2 and 4, but as left in Experiment 3 (see
Figure 3); “become darker than the moving stone” would be
classified as right in Experiments 1, 3 and 4 (and as left in Ex-
periment 2). Self-reports that took both objects into account
are classified as both, such as “becomes one shade darker
and converts into a shape with one more side than the active
stone”. Those that do not refer to objects, not consistent with
data, or make no sense are classified as none.

Figure 4B visualizes percentages of coded self-reports
for all four experiments. In Experiment 1 (original), 90%
of participants in the fixed-L/fixed-agent condition reported
causal relationships referring to the recipient object’s fea-
ture only, while those in the fixed-R/fixed-recipient condi-

tions showed a more diverse pattern: 50% mentioned both
objects, 15% recipient-only, and 5% referring to just the agent
objects’ properties. A linear model predicting label both us-
ing the fixed condition as predictor confirms its significancy,
βfixed-R = 0.5, p < .001.

Strikingly, only participants in Experiment 1 showed such
difference between fixed-R and fixed-L conditions. In all the
other three experiments, participants showed no significant
difference for label both in the two fixing conditions (Exper-
iment 2: βfixed-R = 0.18, p = .16; Experiment 3: βfixed-R =
0, p = 1; Experiment 4: βfixed-R = 0.23, p = .11). Collapsing
all four experiments together, we can treat them as a 4 inter-
action cues × 2 fixed-L/R mixed design, and fit a multinomial
regression model predicting self-report labels with these two
factors. Taking label right and the original interaction cue
as baselines, we found that interaction cue is indeed a sig-
nificant predictor: between original and indicator cues, label
left differs significantly, β = 2.16, p = .03; between original
and movement cues, label left (β = 2.66, p = .008) and la-
bel none (β = 2.19, p = .03) both differ significantly, and be-
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tween original and stability cues, all the other three labels left
(β = 4.33, p < .001), label both (β = 2.51, p < .001), and la-
bel none (β = 2.83, p < .001) differ significantly. Fixed-L/R
also appears to be a significant predictor for all three labels
left (β = −5.16, p < .001), both (β = −4.29, p < .001), and
none (β = −3.93, p < .001), but this is due to the difference
between either the left or right object changes in the anima-
tions.

In sum, these coded self-reports revealed that removing ei-
ther factor from the original animation shifts participants’ fo-
cus to both objects in the causal interaction, resulting in a
more symmetric pattern of generalization.

Discussion
In four experiments, we systematically examined what cues
in causal interactions shape people’s anchor of categorization
in generalization. While successfully replicating the causal
asymmetry in Zhao et al. (2022), we also found that this
asymmetry is sensitive to a mix of factors: object movement,
stability in state changes, and visual and nominal causal role
indicators. The original causal asymmetry depends on all
three factors working together, and removing either one of
them will shift the focus of categorization, leading people to
assume that the causal law that determines what happens in
the interaction is a joint function of both objects.

People’s tendency to parse interactions in terms of a causal
“agent” and “recipient” is often derided as an irrational bias.
For instance, researchers scold lay people for saying that,
in a physical collision, it is the moving ball that exerted a
force on the static ball, when Newtonian mechanics tell us
all forces in the scene are symmetric (White, 2006). We sug-
gest that attributing causal agency to certain objects can actu-
ally serve a functional role, and people do take into account
multiple factors when making that attribution decision. The
disappearance of the causal asymmetry in Experiments 2-4
demonstrates that people can be fully aware of the symmet-
ric causal relationship when they put equal focus toward both
objects in the causal interaction. The fact that Experiment
1 replicates the causal asymmetry reinforces that an overly
strong causal framing may effectively structure the kind of
causal laws that people infer (Gopnik et al., 2004; Griffiths
& Tenenbaum, 2009; Lucas & Griffiths, 2010; Mayrhofer &
Waldmann, 2015), reflected both in self-report data and inter-
participant generalization agreement levels.

Humans excel at generalizing from sparse data (Anderson,
1991; Tenenbaum et al., 2011; Lake et al., 2015; Goodman
et al., 2008), in part because they use assumptions about
causality as inductive biases to guide generalizations (Gel-
man, 2003; Rehder & Hastie, 2001; Quillien, 2018). We ar-
gue that, in intuitive perceptual causality settings, people rely
on interaction cues such as whether an object is moving, or
remains stable throughout the interaction, to decide whether
the object has causal agency, and anchor their future general-
izations based on this. Unlike verbal stimuli where the cause
and effect can be communicated directly, perceptual causal

stimuli need a strong probing of people’s intuitive causal per-
ception (Bramley et al., 2018; Gopnik & Sobel, 2000; Ullman
et al., 2017). Our results suggest that any study that aims to
measure causal reasoning involving animated feature changes
needs to take these interaction cues seriously.

However, since our goal was trying to dissect each cue
from the original convoluted design of Zhao et al. (2022),
we recognize that the new animations we designed here still
mixes two factors on one object at a time. Future research
could expand on these results by employing a fully factorial
design, manipulating the presence or absence of each cue in-
dependently. Other kinds of experimental techniques, such as
iterated learning (Kirby, 2001; Griffiths et al., 2008; Yeung &
Griffiths, 2015) could also provide convergent evidence for
the roles that potential cues of agency may play in object-
based categorization.
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