12 research outputs found
Conception et réalisation d’une source laser femtoseconde GHz et applications au régime d’ablation très haute cadence
These last two decades, femtosecond laser technology has gained considerably in terms of maturity and reliability. These laser pulses enable materials micro-machining with minimal thermal collateral effects, thus allowing to work with an outstanding precision, even on materials highly sensitive to temperature. Nevertheless, the penetration of femtosecond processing into the industrial manufacturing market is limited due to an insufficient productivity. The current strategies consist of optimizing the processes on the one hand and increasing the average power of these laser sources on the other hand. Another way suggests increasing the femtosecond ablation process efficiency by delivering bursts of low-energy pulses instead of one highly energetic pulse.Recent works showed that using bursts of pulses at repetition rates on the order of GHz allows to reach ablation rates one order of magnitude higher than the ones obtained by standard femtosecond pulse machining. Nevertheless, these promising results are controversial, as other works point out levels of efficiency lower than expected, added to collateral thermal damages on the machined materials. A thorough study of this new ablation regime is thus necessary to ensure that its interest is justified on the one hand, and to point out the optimal configurations of its use on the other hand. Several optical oscillators delivering bursts of femtosecond pulses at GHz-level repetition rates and laser amplifiers have been developed to this purpose. These innovating laser systems benefit from great flexibility in terms of reachable laser parameters (pulse repetition rate and energy, number of pulses per burst notably). This flexibility allowed us to perform a thorough study of the GHz-ablation regime by numerous machining experiments on several materials of industrial interest. This study points out the influence of the different laser parameters and thus to explain the variety of results related to GHz-ablation and to guide the use of this regime under favorable conditions to reach an efficient and high-quality machining.Ces deux dernières décennies, la technologie des lasers femtosecondes a considérablement gagné en maturité et en fiabilité. Ces impulsions permettent aujourd’hui de réaliser des procédés de micro-usinage avec des dommages thermiques minimes, autorisant ainsi de travailler avec une grande précision sur des matériaux fortement sensibles à la température. Néanmoins, l’implantation de cette technologie dans le marché des applications industrielles est freinée par une productivité insuffisante. Pour pallier à ce problème, les stratégies utilisées consistent en une optimisation des procédés et en l’obtention de puissances moyennes de plus en plus élevées avec ces sources laser. Une autre voie propose d’augmenter l’efficacité des procédés d’ablation en délivrant différemment l’énergie sur la matière : par rafales d’impulsions de faible énergie plutôt que par impulsions uniques de forte énergie.De récents travaux ont montré que l’utilisation de rafales d’impulsions à des cadences de l’ordre du GHz permet d’atteindre des niveaux d’efficacités supérieurs d’un ordre de grandeur à ceux de l’usinage par impulsions femtosecondes classique. Ces résultats encourageants sont néanmoins controversés, d’autres travaux ayant par la suite mis en évidence des niveaux d’efficacité en deçà des attentes mais aussi la présence de dommages thermiques sur les matériaux usinés. Une étude approfondie de ce potentiel nouveau procédé d’usinage est donc nécessaire afin de s’assurer d’une part qu’il présente bien un intérêt et d’autre part de mettre en évidence les conditions optimales pour son utilisation. Pour cela, différents oscillateurs optiques délivrant des rafales d’impulsions femtosecondes à des cadences de l’ordre du GHz ainsi que des amplificateurs ont été développées. Ces systèmes lasers innovants présentent une grande flexibilité sur les paramètres laser accessibles (cadence et énergie des impulsions, nombre d’impulsions par rafale notamment). Cette flexibilité nous a permis de mener une étude approfondie du procédé d’ablation par rafales GHz sous la forme de nombreux essais d’usinage sur des matériaux d’intérêts industriel. Cette étude a mis en évidence l’influence des différents paramètres laser et a ainsi permis d’expliquer l’inhomogénéité des résultats obtenus avec ce procédé et d’orienter l’utilisation de ce procédé dans des conditions favorables à l’obtention d’un usinage efficace et de bonne qualité
Conception and realisation of a femtosecond laser source with GHz-level pulse repetition rate and application to high repetition rate ablation regime
Ces deux dernières décennies, la technologie des lasers femtosecondes a considérablement gagné en maturité et en fiabilité. Ces impulsions permettent aujourd’hui de réaliser des procédés de micro-usinage avec des dommages thermiques minimes, autorisant ainsi de travailler avec une grande précision sur des matériaux fortement sensibles à la température. Néanmoins, l’implantation de cette technologie dans le marché des applications industrielles est freinée par une productivité insuffisante. Pour pallier à ce problème, les stratégies utilisées consistent en une optimisation des procédés et en l’obtention de puissances moyennes de plus en plus élevées avec ces sources laser. Une autre voie propose d’augmenter l’efficacité des procédés d’ablation en délivrant différemment l’énergie sur la matière : par rafales d’impulsions de faible énergie plutôt que par impulsions uniques de forte énergie.De récents travaux ont montré que l’utilisation de rafales d’impulsions à des cadences de l’ordre du GHz permet d’atteindre des niveaux d’efficacités supérieurs d’un ordre de grandeur à ceux de l’usinage par impulsions femtosecondes classique. Ces résultats encourageants sont néanmoins controversés, d’autres travaux ayant par la suite mis en évidence des niveaux d’efficacité en deçà des attentes mais aussi la présence de dommages thermiques sur les matériaux usinés. Une étude approfondie de ce potentiel nouveau procédé d’usinage est donc nécessaire afin de s’assurer d’une part qu’il présente bien un intérêt et d’autre part de mettre en évidence les conditions optimales pour son utilisation. Pour cela, différents oscillateurs optiques délivrant des rafales d’impulsions femtosecondes à des cadences de l’ordre du GHz ainsi que des amplificateurs ont été développées. Ces systèmes lasers innovants présentent une grande flexibilité sur les paramètres laser accessibles (cadence et énergie des impulsions, nombre d’impulsions par rafale notamment). Cette flexibilité nous a permis de mener une étude approfondie du procédé d’ablation par rafales GHz sous la forme de nombreux essais d’usinage sur des matériaux d’intérêts industriel. Cette étude a mis en évidence l’influence des différents paramètres laser et a ainsi permis d’expliquer l’inhomogénéité des résultats obtenus avec ce procédé et d’orienter l’utilisation de ce procédé dans des conditions favorables à l’obtention d’un usinage efficace et de bonne qualité.These last two decades, femtosecond laser technology has gained considerably in terms of maturity and reliability. These laser pulses enable materials micro-machining with minimal thermal collateral effects, thus allowing to work with an outstanding precision, even on materials highly sensitive to temperature. Nevertheless, the penetration of femtosecond processing into the industrial manufacturing market is limited due to an insufficient productivity. The current strategies consist of optimizing the processes on the one hand and increasing the average power of these laser sources on the other hand. Another way suggests increasing the femtosecond ablation process efficiency by delivering bursts of low-energy pulses instead of one highly energetic pulse.Recent works showed that using bursts of pulses at repetition rates on the order of GHz allows to reach ablation rates one order of magnitude higher than the ones obtained by standard femtosecond pulse machining. Nevertheless, these promising results are controversial, as other works point out levels of efficiency lower than expected, added to collateral thermal damages on the machined materials. A thorough study of this new ablation regime is thus necessary to ensure that its interest is justified on the one hand, and to point out the optimal configurations of its use on the other hand. Several optical oscillators delivering bursts of femtosecond pulses at GHz-level repetition rates and laser amplifiers have been developed to this purpose. These innovating laser systems benefit from great flexibility in terms of reachable laser parameters (pulse repetition rate and energy, number of pulses per burst notably). This flexibility allowed us to perform a thorough study of the GHz-ablation regime by numerous machining experiments on several materials of industrial interest. This study points out the influence of the different laser parameters and thus to explain the variety of results related to GHz-ablation and to guide the use of this regime under favorable conditions to reach an efficient and high-quality machining
Crack-free high-aspect ratio holes in glasses by top–down percussion drilling with infrared femtosecond laser GHz-bursts
We report novel results on top-down percussion drilling in different glasses with femtosecond laser GHz-bursts. Thanks to this particular regime of light – matter interaction, combining non-linear absorption and thermal cumulative effects, we obtained crack-free holes of aspect ratios exceeding 30 in sodalime and 70 in fused silica. The results are discussed in terms of inner wall morphology, aspect ratio and drilling speed
Comparative Study of Percussion Drilling in Glasses with a Femtosecond Laser in Single Pulse, MHz-Burst, and GHz-Burst Regimes and Optimization of the Hole Aspect Ratio
In this contribution, we present a comparative study on top-down drilling in sodalime glass, with a femtosecond laser operating in single-pulse, MHz-burst and GHz-burst modes, respectively. We investigate the hole depth, drilling rate, and hole morphology for these three regimes while keeping the same experimental conditions. We demonstrate that, for both burst regimes, the burst length has to be adapted for optimizing the hole depth. In the GHz-burst regime, the lower the ablation rate the longer the holes. The three drilling regimes lead to different hole morphologies, where the GHz-burst mode results in the best hole quality featuring glossy inner walls and an almost cylindrical morphology. Furthermore, we obtain crack-free holes, the deepest measuring 3.7 mm in length and 25 µm in entrance diameter corresponding to an aspect ratio of 150, which is the highest aspect ratio reported thus far with femtosecond GHz-burst drilling to the best of our knowledge
Bessel Beam Dielectrics Cutting with Femtosecond Laser in GHz-Burst Mode
We report, for the first time to the best of our knowledge, Bessel beam dielectrics cutting with a femtosecond laser in GHz-burst mode. The non-diffractive beam shaping is based on the use of an axicon and allows for cutting glasses up to 1 mm thickness with an excellent cutting quality. Moreover, we present a comparison of the cutting results with the state-of-the-art method, consisting of short MHz-bursts of femtosecond pulses. We further illustrate the influence of the laser beam parameters such as the burst energy and the pitch between consecutive Bessel beams on the machining quality of the cutting plane and provide process windows for both regimes
Online data analysis at the ESRF bioSAXS beamline, BM29
International audienc
Compact kW-class enhancement cavity operated at GHz repetition rates for Inverse Compton Scattering sources
International audienceWe report on a compact kW-class optical system composed of a GHz oscillator amplified at high average power and coupled to an optical cavity exhibiting a 250 enhancement factor.</jats:p