1,112 research outputs found

    Dark matter and Modified Newtonian Dynamics in a sample of high-redshift galaxy clusters observed with Chandra

    Full text link
    We compare the measurement of the gravitational mass of 38 high-redshift galaxy clusters observed by Chandra using Modified Newtonian Dynamics (MOND) and standard Newtonian gravity. Our analysis confirms earlier findings that MOND cannot explain the difference between the baryonic mass and the total mass inferred from the assumption of hydrostatic equilibrium. We also find that the baryon fraction at r2500r_{2500} using MOND is consistent with the Wilkinson Microwave Anisotropy Probe (WMAP) value of ΩB/ΩM\Omega_{B}/\Omega_{M}Comment: New Astronomy in pres

    Soft X-ray excess of clusters: a thermal filament model, and the strong lensing of background galaxy groups

    Full text link
    The observational and theoretical status of the search for missing cosmological baryons is summarized, with a discussion of some indirect methods of detection. The thermal interpretation of the cluster soft X-ray and EUV excess phenomenon is examined in the context of emission filaments, which are the higher density part of the warm hot intergalactic medium (WHIM) residing at the outskirt of clusters. We derived an analytic radial profile of the soft excess surface brightness using a simple filament model, which provided us a means of observationally constraining the WHIM parameters, especially the total mass budget of warm gas associated with a cluster. We then pointed out a new scenario for soft excess emission, viz. a cluster that can strongly lens the soft X-rays from background WHIM knots. If, as seems quite likely, the missing baryons are mostly in the WHIM halos of galaxy groups, the lensing probability will be quite high (\sim 10 %). This way of accounting for at least part of a cluster's soft excess may also explain the absence of O VII absorption at the redshift of the cluster.Comment: ApJ in press, 7 pages, emulateapj styl

    Chandra Measurements of a Complete Sample of X-ray Luminous Galaxy Clusters: the Gas Mass Fraction

    Get PDF
    We present Chandra X-ray measurements of the gas mass fraction out to r500 for a complete sample of the 35 most luminous clusters from the Brightest Cluster Sample and the Extended Brightest Cluster Sample at redshift z=0.15-0.30. The sample includes relaxed and unrelaxed clusters, and the data were analysed independently using two pipelines and two different models for the gas density and temperature. We measure an average of fgas(r500) = 0.163 +/- 0.032, which is in agreement with the cosmic baryon fraction (Omega_b / Omega_M = 0.167 +/- 0.006) at the 1-sigma level, after adding the stellar baryon fraction. Earlier studies reported gas mass fractions significantly lower than the cosmic baryon fraction at r500, and in some cases higher values that are consistent with the cosmic baryon fraction towards the virial radius.In this paper we show that the most X-ray luminous clusters in the redshift range z=0.15-0.30 have a gas mass fraction that is consistent with the cosmic value at r500.Comment: MNRAS submitted, comments welcome; 23 pages, 57 figure

    The Effect of Helium Sedimentation on Galaxy Cluster Masses and Scaling Relations

    Full text link
    Recent theoretical studies predict that the inner regions of galaxy clusters may have an enhanced helium abundance due to sedimentation over the cluster lifetime. If sedimentation is not suppressed (e.g., by tangled magnetic fields), this may significantly affect the cluster mass estimates. We use Chandra X-ray observations of eight relaxed galaxy clusters to investigate the upper limits to the effect of helium sedimentation on the measurement of cluster masses and the best-fit slopes of the Y_X - M_500 and Y_X - M_2500 scaling relations. We calculated gas mass and total mass in two limiting cases: a uniform, un-enhanced abundance distribution and a radial distribution from numerical simulations of helium sedimentation on a timescale of 11 Gyrs. The assumed helium sedimentation model, on average, produces a negligible increase in the gas mass inferred within large radii (r < r500) (1.3 +/- 1.2 per cent) and a (10.2 +/- 5.5) per cent mean decrease in the total mass inferred within r < r500. Significantly stronger effects in the gas mass (10.5 +/- 0.8 per cent) and total mass (25.1 +/- 1.1 per cent) are seen at small radii owing to a larger variance in helium abundance in the inner region, r < 0.1 r500. We find that the slope of the Y_X -M_500 scaling relation is not significantly affected by helium sedimentation.Comment: 11 pages, accepted for publication in Astronomy and Astrophysic

    Galaxy Clusters at z>=1: Gas Constraints from the Sunyaev-Zel'dovich Array

    Get PDF
    We present gas constraints from Sunyaev-Zel'dovich (SZ) effect measurements in a sample of eleven X-ray and infrared (IR) selected galaxy clusters at z >=1, using data from the Sunyaev-Zel'dovich Array (SZA). The cylindrically integrated Compton-y parameter, Y , is calculated by fitting the data to a two-parameter gas pressure profile. Where possible, we also determine the temperature of the hot intra-cluster plasma from Chandra and XMM-Newton data, and constrain the gas mass within the same aperture (r_2500 ) as Y . The SZ effect is detected in the clusters for which the X-ray data indicate gas masses above ~ 10^13 Msun, including XMMU J2235-2557 at redshift z = 1.39, which to date is one of the most distant clusters detected using the SZ effect. None of the IR-selected targets are detected by the SZA measurements, indicating low gas masses for these objects. For these and the four other undetected clusters, we quote upper limits on Y and Mgas_SZ , with the latter derived from scaling relations calibrated with lower redshift clusters. We compare the constraints on Y and X-ray derived gas mass Mgas_X-ray to self-similar scaling relations between these observables determined from observations of lower redshift clusters, finding consistency given the measurement error.Comment: 6 pages, 2 figures, submitted on ApJ

    The extreme ultraviolet excess emission in five clusters of galaxies revisited

    Get PDF
    Evidence for excess extreme ultraviolet (EUV) emission over a tail of X-ray gas bremsstrahlung emission has been building up recently, but in some cases remains controversial, mostly due to the moderate quality of the EUV data. In order to improve the signal to noise ratio in the EUV, we have performed the wavelet analysis and image reconstructions for five clusters of galaxies observed both at EUV and X-ray energies with the EUVE and ROSAT satellites respectively. The profiles of the EUV and X-ray reconstructed images all differ at a very large confidence level and an EUV excess over a thermal bremsstrahlung tail is detected in all five clusters (Abell 1795, Abell 2199, Abell 4059, Coma and Virgo) up to large radii. These results, coupled with recent XMM-Newton observations, suggest that the EUV excess is probably non thermal in origin.Comment: accepted for publication in Astronomy & Astrophysics, final versio
    corecore