2,214 research outputs found
Thermoelectric and Structural Properties of Sputtered AZO Thin Films with Varying Al Doping Ratios
Nanomaterials can be game-changers in the arena of sustainable energy production because they may enable highly efficient thermoelectric energy conversion and harvesting. For this purpose, doped thin film oxides have been proven to be promising systems for achieving high thermoelectric performances. In this work, the design, realization, and experimental investigation of the thermoelectric properties exhibited by a set of five Al:ZnO thin films with thicknesses of 300 nm and Al doping levels ranging from 2 to 8 at.% are described. Using a multi-technique approach, the main structural and morphological features of the grown thin films are addressed, as well as the electrical and thermoelectrical transport properties. The results show that the samples exhibited a Seebeck coefficient absolute value in the range of 22-33 mu V/K, assuming their maximum doping level was 8 at.%, while the samples' resistivity was decreased below 2 x 10(-3) Ohm center dot cm with a doping level of 3 at.%. The findings shine light on the perspectives of the applications of the metal ZnO thin film technology for thermoelectrics
Minimal Flavour Violation for Leptoquarks
Scalar leptoquarks, with baryon and lepton number conserving interactions,
could have TeV scale masses, and be produced at colliders or contribute to a
wide variety of rare decays. In pursuit of some insight as to the most
sensitive search channels, We assume that the leptoquark-lepton-quark coupling
can be constructed from the known mass matrices. We estimate the rates for
selected rare processes in three cases: leptoquarks carrying lepton and quark
flavour, leptoquarks with quark flavour only, and unflavoured leptoquarks. We
find that leptoquark decay to top quarks is an interesting search channel.Comment: 17 pages, 2 figures, minor changes and references adde
LHC Predictions from a Tevatron Anomaly in the Top Quark Forward-Backward Asymmetry
We examine the implications of the recent CDF measurement of the top-quark
forward-backward asymmetry, focusing on a scenario with a new color octet
vector boson at 1-3 TeV. We study several models, as well as a general
effective field theory, and determine the parameter space which provides the
best simultaneous fit to the CDF asymmetry, the Tevatron top pair production
cross section, and the exclusion regions from LHC dijet resonance and contact
interaction searches. Flavor constraints on these models are more subtle and
less severe than the literature indicates. We find a large region of allowed
parameter space at high axigluon mass and a smaller region at low mass; we
match the latter to an SU(3)xSU(3)/SU(3) coset model with a heavy vector-like
fermion. Our scenario produces discoverable effects at the LHC with only 1-2
inverse femtobarns of luminosity at 7-8 TeV. Lastly, we point out that a
Tevatron measurement of the b-quark forward-backward asymmetry would be very
helpful in characterizing the physics underlying the top-quark asymmetry.Comment: 35 pages, 10 figures, 4 table
Color & Weak triplet scalars, the dimuon asymmetry in decay, the top forward-backward asymmetry, and the CDF dijet excess
The new physics required to explain the anomalies recently reported by the D0
and CDF collaborations, namely the top forward-backward asymmetry (FBA), the
like-sign dimuon charge asymmetry in semileptonic b decay, and the CDF dijet
excess, has to feature an amount of flavor symmetry in order to satisfy the
severe constrains arising from flavor violation. In this paper we show that,
once baryon number conservation is imposed, color & weak triplet scalars with
hypercharge can feature the required flavor structure as a consequence
of standard model gauge invariance. The color & weak triplet model can
simultaneously explain the top FBA and the dimuon charge asymmetry or the
dimuon charge asymmetry and the CDF dijet excess. However, the CDF dijet excess
appears to be incompatible with the top FBA in the minimal framework. Our model
for the dimuon asymmetry predicts the observed pattern in the
region of parameter space required to explain the top FBA, whereas our model
for the CDF dijet anomaly is characterized by the absence of beyond the SM
b-quark jets in the excess region. Compatibility of the color & weak triplet
with the electroweak constraints is also discussed. We show that a Higgs boson
mass exceeding the LEP bound is typically favored in this scenario, and that
both Higgs production and decay can be significantly altered by the triplet.
The most promising collider signature is found if the splitting among the
components of the triplet is of weak scale magnitude.Comment: references added, published versio
Flavour Physics in the Soft Wall Model
We extend the description of flavour that exists in the Randall-Sundrum (RS)
model to the soft wall (SW) model in which the IR brane is removed and the
Higgs is free to propagate in the bulk. It is demonstrated that, like the RS
model, one can generate the hierarchy of fermion masses by localising the
fermions at different locations throughout the space. However, there are two
significant differences. Firstly the possible fermion masses scale down, from
the electroweak scale, less steeply than in the RS model and secondly there now
exists a minimum fermion mass for fermions sitting towards the UV brane. With a
quadratic Higgs VEV, this minimum mass is about fifteen orders of magnitude
lower than the electroweak scale. We derive the gauge propagator and despite
the KK masses scaling as , it is demonstrated that the
coefficients of four fermion operators are not divergent at tree level. FCNC's
amongst kaons and leptons are considered and compared to calculations in the RS
model, with a brane localised Higgs and equivalent levels of tuning. It is
found that since the gauge fermion couplings are slightly more universal and
the SM fermions typically sit slightly further towards the UV brane, the
contributions to observables such as and , from the
exchange of KK gauge fields, are significantly reduced.Comment: 33 pages, 15 figures, 5 tables; v2: references added; v3:
modifications to figures 4,5 and 6. version to appear in JHE
Effects of Heavy Metals and Arbuscular Mycorrhiza on the Leaf Proteome of a Selected Poplar Clone: A Time Course Analysis
Arbuscular mycorrhizal (AM) fungi establish a mutualistic symbiosis with the roots of most plant species. While receiving photosynthates, they improve the mineral nutrition of the plant and can also increase its tolerance towards some pollutants, like heavy metals. Although the fungal symbionts exclusively colonize the plant roots, some plant responses can be systemic. Therefore, in this work a clone of Populus alba L., previously selected for its tolerance to copper and zinc, was used to investigate the effects of the symbiosis with the AM fungus Glomus intraradices on the leaf protein expression. Poplar leaf samples were collected from plants maintained in a glasshouse on polluted (copper and zinc contaminated) or unpolluted soil, after four, six and sixteen months of growth. For each harvest, about 450 proteins were reproducibly separated on 2DE maps. At the first harvest the most relevant effect on protein modulation was exerted by the AM fungi, at the second one by the metals, and at the last one by both treatments. This work demonstrates how importantly the time of sampling affects the proteome responses in perennial plants. In addition, it underlines the ability of a proteomic approach, targeted on protein identification, to depict changes in a specific pattern of protein expression, while being still far from elucidating the biological function of each protein
Measurement of the branching fraction and CP content for the decay B(0) -> D(*+)D(*-)
This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APS.We report a measurement of the branching fraction of the decay B0→D*+D*- and of the CP-odd component of its final state using the BABAR detector. With data corresponding to an integrated luminosity of 20.4 fb-1 collected at the Υ(4S) resonance during 1999–2000, we have reconstructed 38 candidate signal events in the mode B0→D*+D*- with an estimated background of 6.2±0.5 events. From these events, we determine the branching fraction to be B(B0→D*+D*-)=[8.3±1.6(stat)±1.2(syst)]×10-4. The measured CP-odd fraction of the final state is 0.22±0.18(stat)±0.03(syst).This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A.P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation
Diffractive Dijet Production at sqrt(s)=630 and 1800 GeV at the Fermilab Tevatron
We report a measurement of the diffractive structure function of
the antiproton obtained from a study of dijet events produced in association
with a leading antiproton in collisions at GeV at the
Fermilab Tevatron. The ratio of at GeV to
obtained from a similar measurement at GeV is compared with
expectations from QCD factorization and with theoretical predictions. We also
report a measurement of the (-Pomeron) and ( of parton in
Pomeron) dependence of at GeV. In the region
, GeV and , is
found to be of the form , which obeys
- factorization.Comment: LaTeX, 9 pages, Submitted to Phys. Rev. Letter
Measurement of D-s(+) and D-s(*+) production in B meson decays and from continuum e(+)e(-) annihilation at √s=10.6 GeV
This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APSNew measurements of Ds+ and Ds*+ meson production rates from B decays and from qq̅ continuum events near the Υ(4S) resonance are presented. Using 20.8 fb-1 of data on the Υ(4S) resonance and 2.6 fb-1 off-resonance, we find the inclusive branching fractions B(B⃗Ds+X)=(10.93±0.19±0.58±2.73)% and B(B⃗Ds*+X)=(7.9±0.8±0.7±2.0)%, where the first error is statistical, the second is systematic, and the third is due to the Ds+→φπ+ branching fraction uncertainty. The production cross sections σ(e+e-→Ds+X)×B(Ds+→φπ+)=7.55±0.20±0.34pb and σ(e+e-→Ds*±X)×B(Ds+→φπ+)=5.8±0.7±0.5pb are measured at center-of-mass energies about 40 MeV below the Υ(4S) mass. The branching fractions ΣB(B⃗Ds(*)+D(*))=(5.07±0.14±0.30±1.27)% and ΣB(B⃗Ds*+D(*))=(4.1±0.2±0.4±1.0)% are determined from the Ds(*)+ momentum spectra. The mass difference m(Ds+)-m(D+)=98.4±0.1±0.3MeV/c2 is also measured.This work was supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the Swiss NSF, A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation
A Study of B0 -> J/psi K(*)0 pi+ pi- Decays with the Collider Detector at Fermilab
We report a study of the decays B0 -> J/psi K(*)0 pi+ pi-, which involve the
creation of a u u-bar or d d-bar quark pair in addition to a b-bar -> c-bar(c
s-bar) decay. The data sample consists of 110 1/pb of p p-bar collisions at
sqrt{s} = 1.8 TeV collected by the CDF detector at the Fermilab Tevatron
collider during 1992-1995. We measure the branching ratios to be BR(B0 -> J/psi
K*0 pi+ pi-) = (8.0 +- 2.2 +- 1.5) * 10^{-4} and BR(B0 -> J/psi K0 pi+ pi-) =
(1.1 +- 0.4 +- 0.2) * 10^{-3}. Contributions to these decays are seen from
psi(2S) K(*)0, J/psi K0 rho0, J/psi K*+ pi-, and J/psi K1(1270)
- …