24 research outputs found

    Dominant Driving Forces in Human Telomere Quadruplex Binding-Induced Structural Alterations

    Get PDF
    Recently various pathways of human telomere (ht) DNA folding into G-quadruplexes and of ligand binding to these structures have been proposed. However, the key issue as to the nature of forces driving the folding and recognition processes remains unanswered. In this study, structural changes of 22-mer ht-DNA fragment (Tel22), induced by binding of ions (K(+), Na(+)) and specific bisquinolinium ligands, were monitored by calorimetric and spectroscopic methods and by gel electrophoresis. Using the global model analysis of a wide variety of experimental data, we were able to characterize the thermodynamic forces that govern the formation of stable Tel22 G-quadruplexes, folding intermediates, and ligand-quadruplex complexes, and then predict Tel22 behavior in aqueous solutions as a function of temperature, salt concentration, and ligand concentration. On the basis of the above, we believe that our work sets the framework for better understanding the heterogeneity of ht-DNA folding and binding pathways, and its structural polymorphism

    European beech stem diameter grows better in mixed than in mono-specific stands at the edge of its distribution in mountain forests

    Get PDF
    Recent studies show that several tree species are spreading to higher latitudes and elevations due to climate change. European beech, presently dominating from the colline to the subalpine vegetation belt, is already present in upper montane subalpine forests and has a high potential to further advance to higher elevations in European mountain forests, where the temperature is predicted to further increase in the near future. Although essential for adaptive silviculture, it remains unknown whether the upward shift of beech could be assisted when it is mixed with Norway spruce or silver fir compared with mono-specific stands, as the species interactions under such conditions are hardly known. In this study, we posed the general hypotheses that the growth depending on age of European beech in mountain forests was similar in mono-specific and mixed-species stands and remained stable over time and space in the last two centuries. The scrutiny of these hypotheses was based on increment coring of 1240 dominant beech trees in 45 plots in mono-specific stands of beech and in 46 mixed mountain forests. We found that (i) on average, mean tree diameter increased linearly with age. The age trend was linear in both forest types, but the slope of the age–growth relationship was higher in mono-specific than in mixed mountain forests. (ii) Beech growth in mono-specific stands was stronger reduced with increasing elevation than that in mixed-species stands. (iii) Beech growth in mono-specific stands was on average higher than beech growth in mixed stands. However, at elevations > 1200 m, growth of beech in mixed stands was higher than that in mono-specific stands. Differences in the growth patterns among elevation zones are less pronounced now than in the past, in both mono-specific and mixed stands. As the higher and longer persisting growth rates extend the flexibility of suitable ages or size for tree harvest and removal, the longer-lasting growth may be of special relevance for multi-aged silviculture concepts. On top of their function for structure and habitat improvement, the remaining old trees may grow more in mass and value than assumed so far.The authors would like to acknowledge networking support by the COST (European Cooperation in Science and Technology) Action CLIMO (Climate-Smart Forestry in Mountain Regions—CA15226) financially supported by the EU Framework Programme for Research and Innovation HORIZON 2020. This publication is part of a project that has received funding from the European Union’s HORIZON 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No 778322. Thanks are also due to the European Union for funding the project ‘Mixed species forest management. Lowering risk, increasing resilience (REFORM)’ (# 2816ERA02S under the framework of Sumforest ERA-Net). Further, we would like to thank the Bayerische Staatsforsten (BaySF) for providing the observational plots and to the Bavarian State Ministry of Food, Agriculture, and Forestry for permanent support of the Project W 07 ‘Long-term experimental plots for forest growth and yield research’ (#7831-26625-2017). We also thank the Forest Research Institute, ERTI Sárvár, Hungary, for assistance and for providing observational plots. Furthermore, our work was partially supported by the SRDA via Project No. APVV-16-0325 and APVV-15-0265, the Ministry of Science and Higher Education of the Republic of Poland, the Project “EVA4.0” No. CZ.02.1.01/0.0/0.0/16_019/0000803 funded by OP RDE and the Project J4-1765 funded by the Slovenian Research Agency and also by the Bulgarian National Science Fund (BNSF) and the Project No. DCOST 01/3/19.10.2018

    Formation of a quasicrystalline phase in Al–Mn base alloys cast at intermediate cooling rates

    Full text link
    Al-rich 94Al–6Mn and 94Al–4Mn–2Fe alloys were suction-cast to evaluate thefeasibility of obtaining bulk quasicrystal-strengthened Al-alloys at intermediatecooling rates alloyed with non-toxic, easily accessible and affordable additions.The influence of different cooling rates on the potential formation of a quasicrystallinephase was examined by means of scanning and transmissionelectron microscopy, X-ray diffraction and differential scanning calorimetry.Increased cooling rates in the thinnest castings entailed a change in samplephase composition. The highest cooling rates turned out to be insufficient toform an icosahedral quasicrystalline phase (I-phase) in the binary alloy. Instead,an orthorhombic approximant phase occurred (L-phase). The addition of Fe tothe 94Al–6Mn binary alloy enhanced the formation of a quasicrystalline phase.At intermediate cooling rates of 102–103 K/s, various metastable phases wereformed, including decagonal and icosahedral quasicrystals and their approximants.Rods (1 mm in diameter) composed of I-phase particles embedded in Almatrix exhibited a hardness of 1.5 GPa, much higher than the 1.1 GPa of 94Al–6Mn

    G4 Sensing Pyridyl‐Thiazole Polyamide Represses c‐KIT

    No full text

    Salt-specific effects in lysozyme solutions

    No full text
    The effects of additions of low-molecular-mass salts on the properties of aqueous lysozyme solutions are examined by using the cloud-point temperature, T_{cloud}, measurements. Mixtures of protein, buffer, and simple salt in water are studied at pH=6.8 (phosphate buffer) and pH=4.6 (acetate buffer). We show that an addition of buffer in the amount above I_{buffer} = 0.6 mol dm^{-3} does not affect the T_{cloud} values. However, by replacing a certain amount of the buffer electrolyte by another salt, keeping the total ionic strength constant, we can significantly change the cloud-point temperature. All the salts de-stabilize the solution and the magnitude of the effect depends on the nature of the salt. Experimental results are analyzed within the framework of the one-component model, which treats the protein-protein interaction as highly directional and of short-range. We use this approach to predict the second virial coefficients, and liquid-liquid phase diagrams under conditions, where T_{cloud} is determined experimentally

    Forest planning across Europe: the spatial scale, tools, and inter-sectoral integration in land-use planning

    No full text
    New approaches to forest planning are needed to support the transition of European forests to sustainable management. The aim of this study is to review forest planning systems already in place throughout Europe by exploring a set of case-study countries reflecting the main silvicultural schools of Western Europe, including Belgium, Finland, France, Italy, Portugal, and Slovenia. A literature review and case-study data were used to assess the scale factors (vertical logic) as well as the relationships between forest planning and other environmental/land-use planning sectors (horizontal logic). The influence of EU policy on the development of forest planning is also discussed. As assessed using the vertical logic, the multi-scale and multi-topic planning approaches adopted in the countries studied here are highly heterogeneous. The horizontal logic shows that despite the importance of an inter-sectoral and harmonic relational framework between forest planning and the planning efforts of other sectors such as landscape and urban planning, the various plans are barely consistent with each other across the European countries studied here. Although interest is growing in the multi-functionality of forests, their sustainable management calls for the development of better integrated planning approaches across Europe

    A universal tool for stability predictions of biotherapeutics, vaccines and in vitro diagnostic products

    No full text
    Abstract It is of particular interest for biopharmaceutical companies developing and distributing fragile biomolecules to warrant the stability and activity of their products during long-term storage and shipment. In accordance with quality by design principles, advanced kinetic modeling (AKM) has been successfully used to predict long-term product shelf-life and relies on data from short-term accelerated stability studies that are used to generate Arrhenius-based kinetic models that can, in turn, be exploited for stability forecasts. The AKM methodology was evaluated through a cross-company perspective on stability modeling for key stability indicating attributes of different types of biotherapeutics, vaccines and biomolecules combined in in vitro diagnostic kits. It is demonstrated that stability predictions up to 3 years for products maintained under recommended storage conditions (2–8 °C) or for products that have experienced temperature excursions outside the cold-chain show excellent agreement with experimental real-time data, thus confirming AKM as a universal and reliable tool for stability predictions for a wide range of product types

    Efficacy of trans-geographic observational network design for revelation of growth pattern in mountain forests across Europe

    Full text link
    Understanding tree and stand growth dynamics in the frame of climate change calls for large-scale analyses. For analysing growth patterns in mountain forests across Europe, the CLIMO consortium compiled a network of observational plots across European mountain regions. Here, we describe the design and effcacy of this network of plots in monospecifc European beech and mixed-species stands of Norway spruce, European beech, and silver fr

    Assessment of indicators for climate smart management in mountain forests

    Full text link
    This chapter addresses the concepts and methods to assess quantitative indicators of Climate-Smart Forestry (CSF) at stand and management unit levels. First, the basic concepts for developing a framework for assessing CSF were reviewed. The suitable properties of indicators and methods for normalization, weighting, and aggregation were summarized. The proposed conceptual approach considers the CSF assessment as an adaptive learning process, which integrates scientifc knowledge and participatory approaches. Then, climate smart indicators were applied on long-term experimental plots to assess CSF of spruce-fr-beech mixed mountain forest. Redundancy and trade-offs between indicators, as well as their sensitivity to management regimes, were analyzed with the aim of improving the practicability of indicators. At the management unit level, the roles of indicators in the different phases of forest management planning were reviewed. A set of 56 indicators were used to assess their importance for management planning in four European countries. The results indicated that the most relevant indicators differed from the set of Pan-European indicators of sustainable forest management. Finally, we discussed results obtained and future challenges, including the following: (i) how to strengthen indicator selections and CSF assessment at stand level, (ii) the potential integration of CSF indicators into silvicultural guidelines, and (iii) the main challenges for integrating indicators into climate-smart forest planning
    corecore