19 research outputs found

    Synthesis and biological activity of a cytostatic inhibitor of MLLr leukemia targeting the DOT1L protein

    Get PDF
    Histone methyltransferase DOT1L catalyzes mono-, di-and trimethylation of histone 3 at lysine residue 79 (H3K79) and hypermethylation of H3K79 has been linked to the development of acute leukemias characterized by the MLL (mixed-lineage leukemia) rearrangements (MLLr cells). The inhibition of H3K79 methylation inhibits MLLr cells proliferation, and an inhibitor specific for DOT1L, pinometostat, was in clinical trials (Phase Ib/II). However, the compound showed poor pharmacological properties. Thus, there is a need to find new potent inhibitors of DOT1L for the treatment of rearranged leukemias. Here we present the design, synthesis, and biological evaluation of a small molecule that inhibits in the nM level the enzymatic activity of hDOT1L, H3K79 methylation in MLLr cells with comparable potency to pinometostat, associated with improved metabolic stability and a characteristic cytostatic effect

    Conception et synthÚse d'une chimiothÚque ciblée contre les épi-méthyltransférases

    No full text
    It is recognized that epigenetic regulation is aberrant in many diseases such as cancer; in particular, methylations of histones and DNA are major players in the formation and maintenance of tumors. Histone (HMT) and DNA (DNMT) methyltransferases are therefore promising targets for anti-cancer therapies. Two DNMT inhibitors are approved for the treatment of certain leukemias and several HMT inhibitors are in clinical trials. Today there is a lack of original and pharmacologically interesting molecules that target these enzymes. We propose here to synthesize a targeted chemical library for HMTs and DNMTs. This was designed from the analysis of available crystallographic structures of the catalytic site of a dozen HMT and DNMT. Since all epigenetic MTases use the same SAM cofactor, our strategy is to design and synthesize a chemical library of SAM analogs to be coupled via binding arms to analogs of methyltransferases substrates. This allowed me to obtain bisubstrate analogs of DNMTs and HMTs. With this in mind, I was first able to design and synthesize an inhibitor based on the cyclopentane backbone against histone methyltransferase DOT1L which is very active in MLLr leukemia cells validating the effectiveness of the strategy. Then, in order to further modulate the molecules, I designed protocols to replace the adenine fragment with isosteres that would lead to greater exploration of chemical space. Secondly, I decided to explore the possibilities of modulating the linker arm and the second substrate of our molecules. I based my strategy on the development of two chemical methodologies, which lead to a rapid and modular synthesis of compounds. The ability of this chemical library to inhibit targeted MTases was determined by laboratory biologists and collaborators from the Pasteur Institute and external staff.Il est acquis que la rĂ©gulation Ă©pigĂ©nĂ©tique est aberrante dans de nombreuses maladies telles que le cancer ; en particulier les mĂ©thylations des histones et de l'ADN sont des acteurs majeurs dans la formation et le maintien des tumeurs. Les mĂ©thyltransfĂ©rases d'histones (HMT) et d'ADN (DNMT) sont donc des cibles prometteuses pour les thĂ©rapies anti-cancĂ©reuses. Deux inhibiteurs de DNMT sont approuvĂ©s pour le traitement de certaines leucĂ©mies et plusieurs inhibiteurs de HMT sont en essai clinique. Aujourd'hui il manque des molĂ©cules originales et pharmacologiquement intĂ©ressantes qui ciblent ces enzymes. Nous proposons ici de synthĂ©tiser une chimiothĂšque ciblĂ©e pour les HMTs et DNMT. Celle-ci a Ă©tĂ© conçue Ă  partir de l'analyse de structures cristallographiques disponibles du site catalytique d'une douzaine de HMT et DNMT. Puisque toutes les MTases Ă©pigĂ©nĂ©tiques utilisent le mĂȘme cofacteur SAM, notre stratĂ©gie consiste Ă  concevoir et synthĂ©tiser une chimiothĂšque d'analogues de SAM Ă  coupler via des bras de liaison Ă  des analogues de substrats des mĂ©thyltransfĂ©rases. Ceci m'a permis d'obtenir des analogues bisubstrats de DNMTs et HMTs. Dans cette optique, j'ai d'abord pu concevoir et synthĂ©tiser un inhibiteur basĂ© sur le squelette cyclopentane contre la mĂ©thyltransfĂ©rase d'histone DOT1L qui est trĂšs actif dans les cellules leucĂ©miques MLLr validant l'efficacitĂ© de la stratĂ©gie. Ensuite, afin de moduler davantage les molĂ©cules, j'ai conçu des protocoles pour remplacer le fragment adĂ©nine par des isostĂšres qui conduiraient Ă  une plus grande exploration de l'espace chimique. Dans un second temps, j'ai dĂ©cidĂ© d'explorer les possibilitĂ©s de moduler le bras de liaison et le second substrat de nos molĂ©cules. J'ai basĂ© ma stratĂ©gie sur le dĂ©veloppement de deux mĂ©thodologies chimiques, qui conduisent Ă  une synthĂšse rapide et modulable de composĂ©s. La capacitĂ© de cette chimiothĂšque Ă  inhiber les MTases ciblĂ©es a Ă©tĂ© dĂ©terminĂ©e par les biologistes du laboratoire et des collaborateurs de l'institut Pasteur et externes

    Conception et synthÚse d'une chimiothÚque ciblée contre les épi-méthyltransférases

    No full text
    It is recognized that epigenetic regulation is aberrant in many diseases such as cancer; in particular, methylations of histones and DNA are major players in the formation and maintenance of tumors. Histone (HMT) and DNA (DNMT) methyltransferases are therefore promising targets for anti-cancer therapies. Two DNMT inhibitors are approved for the treatment of certain leukemias and several HMT inhibitors are in clinical trials. Today there is a lack of original and pharmacologically interesting molecules that target these enzymes. We propose here to synthesize a targeted chemical library for HMTs and DNMTs. This was designed from the analysis of available crystallographic structures of the catalytic site of a dozen HMT and DNMT. Since all epigenetic MTases use the same SAM cofactor, our strategy is to design and synthesize a chemical library of SAM analogs to be coupled via binding arms to analogs of methyltransferases substrates. This allowed me to obtain bisubstrate analogs of DNMTs and HMTs. With this in mind, I was first able to design and synthesize an inhibitor based on the cyclopentane backbone against histone methyltransferase DOT1L which is very active in MLLr leukemia cells validating the effectiveness of the strategy. Then, in order to further modulate the molecules, I designed protocols to replace the adenine fragment with isosteres that would lead to greater exploration of chemical space. Secondly, I decided to explore the possibilities of modulating the linker arm and the second substrate of our molecules. I based my strategy on the development of two chemical methodologies, which lead to a rapid and modular synthesis of compounds. The ability of this chemical library to inhibit targeted MTases was determined by laboratory biologists and collaborators from the Pasteur Institute and external staff.Il est acquis que la rĂ©gulation Ă©pigĂ©nĂ©tique est aberrante dans de nombreuses maladies telles que le cancer ; en particulier les mĂ©thylations des histones et de l'ADN sont des acteurs majeurs dans la formation et le maintien des tumeurs. Les mĂ©thyltransfĂ©rases d'histones (HMT) et d'ADN (DNMT) sont donc des cibles prometteuses pour les thĂ©rapies anti-cancĂ©reuses. Deux inhibiteurs de DNMT sont approuvĂ©s pour le traitement de certaines leucĂ©mies et plusieurs inhibiteurs de HMT sont en essai clinique. Aujourd'hui il manque des molĂ©cules originales et pharmacologiquement intĂ©ressantes qui ciblent ces enzymes. Nous proposons ici de synthĂ©tiser une chimiothĂšque ciblĂ©e pour les HMTs et DNMT. Celle-ci a Ă©tĂ© conçue Ă  partir de l'analyse de structures cristallographiques disponibles du site catalytique d'une douzaine de HMT et DNMT. Puisque toutes les MTases Ă©pigĂ©nĂ©tiques utilisent le mĂȘme cofacteur SAM, notre stratĂ©gie consiste Ă  concevoir et synthĂ©tiser une chimiothĂšque d'analogues de SAM Ă  coupler via des bras de liaison Ă  des analogues de substrats des mĂ©thyltransfĂ©rases. Ceci m'a permis d'obtenir des analogues bisubstrats de DNMTs et HMTs. Dans cette optique, j'ai d'abord pu concevoir et synthĂ©tiser un inhibiteur basĂ© sur le squelette cyclopentane contre la mĂ©thyltransfĂ©rase d'histone DOT1L qui est trĂšs actif dans les cellules leucĂ©miques MLLr validant l'efficacitĂ© de la stratĂ©gie. Ensuite, afin de moduler davantage les molĂ©cules, j'ai conçu des protocoles pour remplacer le fragment adĂ©nine par des isostĂšres qui conduiraient Ă  une plus grande exploration de l'espace chimique. Dans un second temps, j'ai dĂ©cidĂ© d'explorer les possibilitĂ©s de moduler le bras de liaison et le second substrat de nos molĂ©cules. J'ai basĂ© ma stratĂ©gie sur le dĂ©veloppement de deux mĂ©thodologies chimiques, qui conduisent Ă  une synthĂšse rapide et modulable de composĂ©s. La capacitĂ© de cette chimiothĂšque Ă  inhiber les MTases ciblĂ©es a Ă©tĂ© dĂ©terminĂ©e par les biologistes du laboratoire et des collaborateurs de l'institut Pasteur et externes

    Design and synthesis of a targeted chemical library against epi-methyltransferases

    No full text
    Il est acquis que la rĂ©gulation Ă©pigĂ©nĂ©tique est aberrante dans de nombreuses maladies telles que le cancer ; en particulier les mĂ©thylations des histones et de l'ADN sont des acteurs majeurs dans la formation et le maintien des tumeurs. Les mĂ©thyltransfĂ©rases d'histones (HMT) et d'ADN (DNMT) sont donc des cibles prometteuses pour les thĂ©rapies anti-cancĂ©reuses. Deux inhibiteurs de DNMT sont approuvĂ©s pour le traitement de certaines leucĂ©mies et plusieurs inhibiteurs de HMT sont en essai clinique. Aujourd'hui il manque des molĂ©cules originales et pharmacologiquement intĂ©ressantes qui ciblent ces enzymes. Nous proposons ici de synthĂ©tiser une chimiothĂšque ciblĂ©e pour les HMTs et DNMT. Celle-ci a Ă©tĂ© conçue Ă  partir de l'analyse de structures cristallographiques disponibles du site catalytique d'une douzaine de HMT et DNMT. Puisque toutes les MTases Ă©pigĂ©nĂ©tiques utilisent le mĂȘme cofacteur SAM, notre stratĂ©gie consiste Ă  concevoir et synthĂ©tiser une chimiothĂšque d'analogues de SAM Ă  coupler via des bras de liaison Ă  des analogues de substrats des mĂ©thyltransfĂ©rases. Ceci m'a permis d'obtenir des analogues bisubstrats de DNMTs et HMTs. Dans cette optique, j'ai d'abord pu concevoir et synthĂ©tiser un inhibiteur basĂ© sur le squelette cyclopentane contre la mĂ©thyltransfĂ©rase d'histone DOT1L qui est trĂšs actif dans les cellules leucĂ©miques MLLr validant l'efficacitĂ© de la stratĂ©gie. Ensuite, afin de moduler davantage les molĂ©cules, j'ai conçu des protocoles pour remplacer le fragment adĂ©nine par des isostĂšres qui conduiraient Ă  une plus grande exploration de l'espace chimique. Dans un second temps, j'ai dĂ©cidĂ© d'explorer les possibilitĂ©s de moduler le bras de liaison et le second substrat de nos molĂ©cules. J'ai basĂ© ma stratĂ©gie sur le dĂ©veloppement de deux mĂ©thodologies chimiques, qui conduisent Ă  une synthĂšse rapide et modulable de composĂ©s. La capacitĂ© de cette chimiothĂšque Ă  inhiber les MTases ciblĂ©es a Ă©tĂ© dĂ©terminĂ©e par les biologistes du laboratoire et des collaborateurs de l'institut Pasteur et externes.It is recognized that epigenetic regulation is aberrant in many diseases such as cancer; in particular, methylations of histones and DNA are major players in the formation and maintenance of tumors. Histone (HMT) and DNA (DNMT) methyltransferases are therefore promising targets for anti-cancer therapies. Two DNMT inhibitors are approved for the treatment of certain leukemias and several HMT inhibitors are in clinical trials. Today there is a lack of original and pharmacologically interesting molecules that target these enzymes. We propose here to synthesize a targeted chemical library for HMTs and DNMTs. This was designed from the analysis of available crystallographic structures of the catalytic site of a dozen HMT and DNMT. Since all epigenetic MTases use the same SAM cofactor, our strategy is to design and synthesize a chemical library of SAM analogs to be coupled via binding arms to analogs of methyltransferases substrates. This allowed me to obtain bisubstrate analogs of DNMTs and HMTs. With this in mind, I was first able to design and synthesize an inhibitor based on the cyclopentane backbone against histone methyltransferase DOT1L which is very active in MLLr leukemia cells validating the effectiveness of the strategy. Then, in order to further modulate the molecules, I designed protocols to replace the adenine fragment with isosteres that would lead to greater exploration of chemical space. Secondly, I decided to explore the possibilities of modulating the linker arm and the second substrate of our molecules. I based my strategy on the development of two chemical methodologies, which lead to a rapid and modular synthesis of compounds. The ability of this chemical library to inhibit targeted MTases was determined by laboratory biologists and collaborators from the Pasteur Institute and external staff

    Direct Synthesis of Allyl Amines with 2‐Nitrosulfonamide Derivatives via the Tsuji‐Trost Reaction

    No full text
    International audienceThe Tsuji-Trost Reaction is a palladium-catalysed allylation of nucleophiles that consists in the reaction of a nitrogen, carbon or oxygen-based nucleophiles with an allylic substrate bearing a leaving group. Here we present the use of 2-nitrosulfonamide derivatives as nucleophile, which are reactive under mild conditions. 2-nitrosulfonyl groups are well-known dual protective activator groups easy to introduce in any type of amine substrates. The resulting 2-nitrosulfonamide derivatives are ideal substrates for the Tsuji-Trost reaction to afford a convenient and flexible access to primary and dissymmetric secondary allyl amines. The optimised procedure is flexible (for solvent, temperature, functional groups) and has been applied with good to excellent yield to access to a wide range of allyl amine derivatives

    Espoirs et promesses de la mĂ©thylation de l’ADN et des histones comme cibles anticancĂ©reuses

    No full text
    International audienceEpigenetic regulation is altered in many diseases, in particular in cancer. Several molecules acting on the epigenetic regulation are in clinical trials, some of which are already approved for the treatment of haematological cancers. We will summarize here the latest advances in the discovery of chemical molecules acting on DNA and histone methylation. These new molecules bring new promises but also limitations that we will discuss.La régulation épigénétique est altérée dans de nombreuses maladies, dont le cancer. Plusieurs molécules agissant sur la régulation épigénétique sont testées en phase clinique ou déjà approuvées pour le traitement de leucémies, par exemple. Nous allons ici résumer les derniÚres avancées concernant la découverte de molécules chimiques agissant sur la méthylation de l'ADN et des histones. Ces molécules apportent de nouvelles promesses mais ont aussi des limites que nous allons discuter

    Late-Stage Aryl C-H Bond Cyclopropenylation with Cyclopropenium Cations.

    No full text
    Herein, we disclose the first regio-, site- and chemoselective late-stage (hetero)aryl C-H bond cyclopropenylation with cyclopropenium cations (CPCs). The process is fast, operationally simple and showed an excellent functional group tolerance in densely-functionalized drug molecules, natural products, agrochemicals and fluorescent dyes. Moreover, we discovered that the installation of the cyclopropene ring in drug molecules could not only be used to shield against metabolic instability but also as a synthetic tool to reach medicinally-relevant sp3-rich scaffolds exploiting the highly-strained nature of the cyclopropene ring with known transformations
    corecore