41 research outputs found

    From the transantarctic basin to the ferrar large igneous province-new palynostratigraphic age constraints for triassic-jurassic sedimentation and magmatism in East Antarctica

    Get PDF
    We present new palynological data from the Transantarctic Mountains that clarify the timing of sedimentary and magmatic processes in the transition from continental deposition of the Beacon Supergroup to emplacement of the Ferrar Large Igneous Province. Samples were collected from twenty-three Triassic and Jurassic sections in the southern area of north Victoria Land (NVL), East Antarctica. Recovered palynomorph assemblages are correlated with the widely used, although informal palynostratigraphic framework established for eastern Australia by Price. The associated Late Triassic-earliest Jurassic zone, APT5, is modified here with a proposed new subdivision: Lower APT5 ("APT5L"; middle-late Norian), Middle APT5 ("APT5M"; Rhaetian), and Upper APT5 ("APT5U"; Hettangian-earliest Sinemurian). We further propose a modification unifying the relevant formal eastern Australian and New Zealand palynostratigraphic zones, with a new Polycingulatisporites crenulatus Association Zone (new zonal status) that includes the P. crenulatus Association Subzone (new subzone; equivalent to APT5L) and the following Foveosporites moretonensis Association Subzone (new subzonal status; equivalent to APT5M). Our palynostratigraphic dating of the NVL assemblages demonstrates that the onset of sedimentation was diachronous in this part of the Transantarctic Basin, ranging from at least the Rhaetian to, in places, early Sinemurian. By lack of evidence for rocks containing APT5U assemblages and by analogy with the few coeval sections in Australia, we infer that the Hettangian interval in NVL is probably consumed by unconformity. Deposition of ashes from distal silicic volcanism commenced in the early Sinemurian and reached a peak phase beginning in middle Pliensbachian (ca 187. Ma), coinciding with the first major magmatic interval of the silicic Chon Aike Province in Patagonia and West Antarctica. Two major episodes of phreatomagmatic activity, driven by shallow-level sill intrusion into sandstone aquifers, occurred during the middle Pliensbachian and during the late Pliensbachian-early Toarcian. The latter episode was closely followed by the first pillow extrusion and local lava effusion. Contrary to some previous studies, we further conclude that all available palynological evidence is compatible with a short-lived emplacement of the plateau-forming Kirkpatrick Basalt at around 180. Ma during the early Toarcian. © 2014 Elsevier B.V

    A systematic description of the Triassic to Lower Jurassic Section Peak Formation in North Victoria Land (Antarctica)

    Get PDF

    Fossil sites in the continental Victoria and Ferrar groups (Triassic Jurassic) of North Victoria Land, Antarctica

    Get PDF

    Macrofossil evidence for pleuromeialean lycophytes from the Triassic of Antarctica

    No full text
    Triassic microfloras from Antarctica contain abundant lycophyte spores. However, macrofossils of this group of plants are missing, and thus the precise affinities of the spore producers remain unknown. Macrofossil remains of a pleuromeialean lycophyte, including an incomplete strobilus, isolated sporophylls and sporangia, as well as abundant megaspores, occur on a single rock sample from the central Transantarctic Mountains. Also occurring on the same surface is Mesenteriophyllum serratum, a strap−shaped leaf morphotype of uncertain affinity previously known only from the Kyrgyz Republic and the Taimyr Peninsula. The leaves display alternating transverse ridges and depressions that are similar to structures seen in compressed leaves of various isoetalean lycophytes. Leaf morphology and anatomy, together with the close association of the other lycophyte remains, suggest that M. serratum represents a pleuromeialean lycophyte leaf, which was part of the same plant that produced the sporophylls and sporangia. Sedimentological data indicate that this lycophyte inhabited a swampy, probably coal−forming overbank environment, which contrasts with the assumed xeroto halophytic habit of many other pleuromeialean lycophytes

    Using more than the oldest fossils: Dating Osmundaceae with three Bayesian clock approaches

    No full text
    A major concern in molecular clock dating is how to use information from the fossil record to calibrate genetic distances from DNA sequences. Here we apply three Bayesian dating methods that differ in how calibration is achieved—“node dating” (ND) inBEAST, “total evidence” (TE) dating in MrBayes, and the “fossilized birth–death” (FBD) in FDPPDiv—to infer divergence times in the royal ferns. Osmundaceae have 16–17 species in four genera, two mainly in the Northern Hemisphere and two in South Africa and Australasia; they are the sister clade to the remaining leptosporangiate ferns. Their fossil record consists of at least 150 species in ∌17 genera. For ND, we used the five oldest fossils, whereas for TE and FBD dating, which do not require forcing fossils to nodes and thus can use more fossils,we included up to 36 rhizomes and frond compression/impression fossils, which for TE datingwere scored for 33morphological characters.We also subsampled 10%, 25%, and 50% of the 36 fossils to assess model sensitivity. FBD-derived divergence ages were generally greater than those inferred from ND; two of seven TE-derived ages agreed with FBD-obtained ages, the others were much younger or much older than ND or FBD ages. We prefer the FBD-derived ages because they best fit the Osmundales fossil record (including Triassic fossils not used in our study). Under the preferred model, the clade encompassing extant Osmundaceae (and many fossils) dates to the latest Paleozoic to Early Triassic; divergences of the extant species occurred during the Neogene. Under the assumption of constant speciation and extinction rates, the FBD approach yielded speciation and extinction rates that overlapped those obtained from just neontological data. However, FBD estimates of speciation and extinction are sensitive to violations in the assumption of continuous fossil sampling; therefore, these estimates should be treated with caution.Exceptional permineralized biotas - windows into the evolution and functional diversity of terrestrial ecosystems through tim

    From the transantarctic basin to the ferrar large igneous province-new palynostratigraphic age constraints for triassic-jurassic sedimentation and magmatism in East Antarctica

    Get PDF
    We present new palynological data from the Transantarctic Mountains that clarify the timing of sedimentary and magmatic processes in the transition from continental deposition of the Beacon Supergroup to emplacement of the Ferrar Large Igneous Province. Samples were collected from twenty-three Triassic and Jurassic sections in the southern area of north Victoria Land (NVL), East Antarctica. Recovered palynomorph assemblages are correlated with the widely used, although informal palynostratigraphic framework established for eastern Australia by Price. The associated Late Triassic-earliest Jurassic zone, APT5, is modified here with a proposed new subdivision: Lower APT5 ("APT5L"; middle-late Norian), Middle APT5 ("APT5M"; Rhaetian), and Upper APT5 ("APT5U"; Hettangian-earliest Sinemurian). We further propose a modification unifying the relevant formal eastern Australian and New Zealand palynostratigraphic zones, with a new Polycingulatisporites crenulatus Association Zone (new zonal status) that includes the P. crenulatus Association Subzone (new subzone; equivalent to APT5L) and the following Foveosporites moretonensis Association Subzone (new subzonal status; equivalent to APT5M). Our palynostratigraphic dating of the NVL assemblages demonstrates that the onset of sedimentation was diachronous in this part of the Transantarctic Basin, ranging from at least the Rhaetian to, in places, early Sinemurian. By lack of evidence for rocks containing APT5U assemblages and by analogy with the few coeval sections in Australia, we infer that the Hettangian interval in NVL is probably consumed by unconformity. Deposition of ashes from distal silicic volcanism commenced in the early Sinemurian and reached a peak phase beginning in middle Pliensbachian (ca 187. Ma), coinciding with the first major magmatic interval of the silicic Chon Aike Province in Patagonia and West Antarctica. Two major episodes of phreatomagmatic activity, driven by shallow-level sill intrusion into sandstone aquifers, occurred during the middle Pliensbachian and during the late Pliensbachian-early Toarcian. The latter episode was closely followed by the first pillow extrusion and local lava effusion. Contrary to some previous studies, we further conclude that all available palynological evidence is compatible with a short-lived emplacement of the plateau-forming Kirkpatrick Basalt at around 180. Ma during the early Toarcian. © 2014 Elsevier B.V

    From the transantarctic basin to the ferrar large igneous province-new palynostratigraphic age constraints for triassic-jurassic sedimentation and magmatism in East Antarctica

    No full text
    We present new palynological data from the Transantarctic Mountains that clarify the timing of sedimentary and magmatic processes in the transition from continental deposition of the Beacon Supergroup to emplacement of the Ferrar Large Igneous Province. Samples were collected from twenty-three Triassic and Jurassic sections in the southern area of north Victoria Land (NVL), East Antarctica. Recovered palynomorph assemblages are correlated with the widely used, although informal palynostratigraphic framework established for eastern Australia by Price. The associated Late Triassic-earliest Jurassic zone, APT5, is modified here with a proposed new subdivision: Lower APT5 ("APT5L"; middle-late Norian), Middle APT5 ("APT5M"; Rhaetian), and Upper APT5 ("APT5U"; Hettangian-earliest Sinemurian). We further propose a modification unifying the relevant formal eastern Australian and New Zealand palynostratigraphic zones, with a new Polycingulatisporites crenulatus Association Zone (new zonal status) that includes the P. crenulatus Association Subzone (new subzone; equivalent to APT5L) and the following Foveosporites moretonensis Association Subzone (new subzonal status; equivalent to APT5M). Our palynostratigraphic dating of the NVL assemblages demonstrates that the onset of sedimentation was diachronous in this part of the Transantarctic Basin, ranging from at least the Rhaetian to, in places, early Sinemurian. By lack of evidence for rocks containing APT5U assemblages and by analogy with the few coeval sections in Australia, we infer that the Hettangian interval in NVL is probably consumed by unconformity. Deposition of ashes from distal silicic volcanism commenced in the early Sinemurian and reached a peak phase beginning in middle Pliensbachian (ca 187. Ma), coinciding with the first major magmatic interval of the silicic Chon Aike Province in Patagonia and West Antarctica. Two major episodes of phreatomagmatic activity, driven by shallow-level sill intrusion into sandstone aquifers, occurred during the middle Pliensbachian and during the late Pliensbachian-early Toarcian. The latter episode was closely followed by the first pillow extrusion and local lava effusion. Contrary to some previous studies, we further conclude that all available palynological evidence is compatible with a short-lived emplacement of the plateau-forming Kirkpatrick Basalt at around 180. Ma during the early Toarcian. © 2014 Elsevier B.V

    From the transantarctic basin to the ferrar large igneous province-new palynostratigraphic age constraints for triassic-jurassic sedimentation and magmatism in East Antarctica

    No full text
    We present new palynological data from the Transantarctic Mountains that clarify the timing of sedimentary and magmatic processes in the transition from continental deposition of the Beacon Supergroup to emplacement of the Ferrar Large Igneous Province. Samples were collected from twenty-three Triassic and Jurassic sections in the southern area of north Victoria Land (NVL), East Antarctica. Recovered palynomorph assemblages are correlated with the widely used, although informal palynostratigraphic framework established for eastern Australia by Price. The associated Late Triassic-earliest Jurassic zone, APT5, is modified here with a proposed new subdivision: Lower APT5 ("APT5L"; middle-late Norian), Middle APT5 ("APT5M"; Rhaetian), and Upper APT5 ("APT5U"; Hettangian-earliest Sinemurian). We further propose a modification unifying the relevant formal eastern Australian and New Zealand palynostratigraphic zones, with a new Polycingulatisporites crenulatus Association Zone (new zonal status) that includes the P. crenulatus Association Subzone (new subzone; equivalent to APT5L) and the following Foveosporites moretonensis Association Subzone (new subzonal status; equivalent to APT5M). Our palynostratigraphic dating of the NVL assemblages demonstrates that the onset of sedimentation was diachronous in this part of the Transantarctic Basin, ranging from at least the Rhaetian to, in places, early Sinemurian. By lack of evidence for rocks containing APT5U assemblages and by analogy with the few coeval sections in Australia, we infer that the Hettangian interval in NVL is probably consumed by unconformity. Deposition of ashes from distal silicic volcanism commenced in the early Sinemurian and reached a peak phase beginning in middle Pliensbachian (ca 187. Ma), coinciding with the first major magmatic interval of the silicic Chon Aike Province in Patagonia and West Antarctica. Two major episodes of phreatomagmatic activity, driven by shallow-level sill intrusion into sandstone aquifers, occurred during the middle Pliensbachian and during the late Pliensbachian-early Toarcian. The latter episode was closely followed by the first pillow extrusion and local lava effusion. Contrary to some previous studies, we further conclude that all available palynological evidence is compatible with a short-lived emplacement of the plateau-forming Kirkpatrick Basalt at around 180. Ma during the early Toarcian. © 2014 Elsevier B.V
    corecore